Effect of certain physical and chemical factors on the development of biofilms in Lactobacillus plantarum

Authors

  • Maryam Laith Khalil University of Mosul
  • Tariq Zaid Ibrahim University of Mosul

DOI:

https://doi.org/10.56286/b950r102

Keywords:

Biofilm, L. plantarum , MRS , pH ,Planktonic

Abstract

Lactobacillus plantarum is known to produce biofilms and planktonic cells. It has the ability to grow in MRS broth on inert surfaces. This study aimed to examine the ability of L. plantarum to generate biofilms and planktonic cells under diverse environmental conditions. The study also included the effect of temperature and pH changes on the growth of biofilms. In addition, the study investigated the effect of different sugars added to the MRS medium on biofilm formation. The results confirmed that the optimal temperature for biofilm growth is 37°C, and that the best pH 8. It was noted that the use of  MacConkey's medium hinders bacterial growth.. Conversely, the addition of sugars to media environments significantly enhances biofilm formation, with biofilm production increasing alongside concentrations of glucose, sucrose, fructose, maltose and starch. The production of biofilms by L. plantarum holds importance for food processing and preservation, and presents diverse potential medical applications.

 

 

References

Akbas, M. Y., & Kokumer, T. (2015). The prevention and removal of biofilm formation of Staphylococcus aureus strains isolated from raw milk samples by citric acid treatments. International Journal of Food Science & Technology, 50(7), 1666-1672. ? doi.org/10.1111/ijfs.12823

Behara, S., Ray, R., and Zdolec, N. (2018). Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BioMed Research International, ID 9361614, 18 pages doi.org/10.1155/2018/9361614

Bonneville L, Maia V, Barroso I, Martínez-Suárez JV, Brito L. (2021). Lactobacillus plantarum in Dual-Species Biofilms with Listeria monocytogenes enhanced the Anti-Listeria Activity of a Commercial Disinfectant Based on Hydrogen Peroxide and Peracetic Acid. Front Microbiol. 2021 Jul 30; 12:631627. doi: 10.3389/fmicb.2021.631627.

Coffey, B. M., & Anderson, G. G. (2014). Biofilm formation in the 96-well microtiter plate. Pseudomonas methods and protocols, 631-641. ? doi: 10.1007/978-1-4939-0473-0_48.

Corte, L., Pierantoni, D.C., Tascini, C., Roscini, L., and Cardinali, G. (2019). Biofilm specific activity: A measure to quantify microbial biofilm. Microorganisms, 2019, 7, 73. doi: 10.3390/microorganisms7030073.

Ding T, and Li Y. (2020). Beneficial effect and mechanism of walnut oligopeptide on Lactobacillus plantarum Z7. Food Science and Nutrition. 2020, Sep. doi: 10.1002/fsn3.2029.

Donlan, Rodney M & Costerton, J. William,2002, "Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms", American Society for Microbiology Journals, Vol. 15, No. 2, USA. doi: 10.1128/CMR.15.2.167-193.2002.

Giraud, E., Lelong, B., and Raimbault, M. (1991). Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Applied Microbiology and Biotechnology. 36(1):96–99. DOI:10.1007/BF00164706.

Guzma´ n-Soto, Irene et al., 2021, "Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models", iScience journal, Vol. 24, Issue 5, Cambridge, USA. doi.org/10.1016/j.isci.2021.102443.

Herigstad, B., Hamilton, M., & Heersink, J. (2001). How to optimize the drop plate method for enumerating bacteria? Journal of microbiological methods, 44(2), 121-129. doi.org/10.1016/S0167-7012(00)00241-4.

Jalilsood T., Baradaran A., Song A.AL. et al. (2015). Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: a potential host for the expression of heterologous proteins. Microb Cell Fact 14, 96 (2015). doi.org/10.1186/s12934-015-0283-8.

Klimko, A.I., Cherdyntseva, T.A., Brioukhanov, A.L., and Netrusov, A.I. (2020). In vitro Evaluation of Probiotic Potential of Selected Lactic Acid Bacteria Strains. Probiotics Antimicrob. Proteins, 2020, 12, 1139–1148. doi: 10.1007/s12602-018-9395-x.

Lefebvre, E., Vighetto, C., Di Martino, P., Garde, V. L., & Seyer, D. (2016). Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. International journal of antimicrobial agents, 48(2), 181-188. doi.org/ 10.1016/j.ijantimicag.2016.05.008.

Matej?eková Z, Liptáková D, Spodniaková S and Valík ?. (2016). Characterization of the growth of Lactobacillus plantarum in milk in dependence on temperature. Acta Chimica Slovaca, vol.9, no.2, 2016, pp.104-108. doi.org/10.1515/acs-2016-0018.

Pannella G, Lombardi SJ, Coppola F, Vergalito F, Iorizzo M, Succi M, Tremonte P, Iannini C, Sorrentino E, Coppola R. (2020). Effect of Biofilm Formation by Lactobacillus plantarum on the Malolactic Fermentation in Model Wine. Foods. 2020 Jun 17;9(6):797. doi: 10.3390/foods9060797.

Razmjooei, M., Shad, E., Nejadmansouri, M., Safdarianghomsheh, R., Delvigne, F., and Khalesi, M. (2020). Effect of metal support and different carbon sources on CLA production using Lactobacillus plantarum Biochemical Engineering Journal, Volume 162, 2020, 107715, ISSN 1369-703X, doi.org/10.1016/j.bej.2020.107715.

Salas-Jara MJ, Ilabaca A, Vega M, García A. (2016). Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics. Microorganisms. 2016 Sep 20; 4(3):35. doi: 10.3390/microorganisms4030035.

Song, H., Zhang, J., Qu, J., Liu, J., Yin, P., Zhang, G., and Shang, D. (2019). Lactobacillus rhamnosus GG microcapsules inhibit Escherichia coli biofilm formation in coculture. Biotechnol. Lett. 2019, 41, 1007–1014. doi: 10.1007/s10529-019-02694-2.

Wang, M., Fu, T., Hao, J., Li, L., Tian, M., Jin, N., Ren, L., and Li, C. (2020). A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. Int J Biol Macromol, 2020; 1;160:736-740. doi: 10.1016/j.ijbiomac.2020.05.239.

Yue, M., Cao, H., Zhang, J., Li, S., Meng, Y., Chen, W., Huang, L., and Dum Y, (2013). Improvement of mannitol production by Lactobacillus brevis mutant 3-A5 based on dual-stage pH control and fed-batch fermentations. World Journal of Microbiology and Biotechnology, 29(10):1923-1930. doi: 10.1007/s11274-013-1357-6.

Zacharof, MP., and Lovitt, RW (2012). Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia, 2:50-56. doi.org/10.1016/j.apcbee.2012.06.010.

Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol. 2011 Aug;28(5):1033-40. doi: 10.1016/j.fm.2011.02.009.

Additional Files

Published

2024-06-28

Issue

Section

Articles

How to Cite

Effect of certain physical and chemical factors on the development of biofilms in Lactobacillus plantarum. (2024). NTU Journal of Agriculture and Veterinary Science, 4(2). https://doi.org/10.56286/b950r102

Similar Articles

You may also start an advanced similarity search for this article.