Influence of Induced Diabetes on the Severity of Experimental Toxoplasmosis in Mice
DOI:
https://doi.org/10.56286/jemzwz21Keywords:
Pancreatic megaly, Placenta, Toxoplasma gondii, Mus musculus.Abstract
This study aimed to evaluate the effect of induced diabetes on the severity of experimental toxoplasmosis in mice. 10 placenta samples were collected from Al-Salam Hospital in the city of Mosul. The parasite isolated and identified. Eighty mice were experimental diabetes were induced with Alloxan, and divided into three groups; two groups 40 mice of both sexes (20 males and 20 females) infected in Toxoplasma gondii (T. gondii), and 20 mice consider as a control group. Mice were sacrificed at one, two, three and six weeks post infection (p.i.), blood serum was collected and evaluated for the severity of T. gondii infection using an ELISA kit, and glucose and insulin levels were measured. Tissue cysts in brain casts were also assessed. The results showed a significant difference at P < 0.01. in the glucose level in all groups, the highest glucose level was recorded at six week i.p in females which recorded 274.13±74.13. It was also observed that there is an increase in the rate of insulin level, the highest rate was showed in the second and sixth weeks p.i in male group which recorded16.15±4.14. furthermore, it was found that the highest concentration level forIGg was recorded at third week p.i females which recorded 0.52±0.06., Furthermore, a statistical relationship was found between males and females according to number of cysts.
References
Hajj, R. E., Tawk, L., Itani, S., Hamie, M., Ezzeddine, J., El Sabban, M., & El Hajj, H. (2021). Toxoplasmosis: Current and emerging parasite druggable targets. Microorganisms, 9(12), 2531.? https://doi.org/10.3390/microorganisms9122531.
Almeria, S., & Dubey, J. P. (2021). Foodborne transmission of Toxoplasma gondii infection in the last decade. An overview. Research in veterinary science, 135, 371-385.https://doi.org/10.1016/j.rvsc.2020.10.019.
Smith, N. C., Goulart, C., Hayward, J. A., Kupz, A., Miller, C. M., & van Dooren, G. G. (2021). Control of human toxoplasmosis. International Journal forParasitology, 51(2- 3), 95-121. https://doi.org/10.1016/j.ijpara.2020.11.001.
Pazoki, H., Ziaee, M., Anvari, D., Rezaei, F., Ahmadpour, E., Haghparast-Kenari, B., & Pagheh, A. S. (2022). Toxoplasma gondii infection as a potential risk for chronic liver diseases: A systematic review and meta-analysis. Microbial pathogenesis, 149, 104578.
https://doi.org/10.1016/j.micpath.2020.104578.
Robert-Gangneux et al.Epidemiology of and diagnostic strategies for toxoplasmosis Clin. Microbiol. Rev.(2012). https://doi.org/10.1128/cmr.05013-11.
El-Kady, A. M., Alzahrani, A. M., Elshazly, H., Alshehri, E. A., Wakid, M. H., Gattan, H. S., & Younis, S. S. (2022). Pancreatic Pathological Changes in Murine Toxoplasmosis and Possible Association with Diabetes Mellitus. Biomedicines, 11(1), 18. https://doi.org/10.3390/biomedicines11010018
Soltani, S., Tavakoli, S., Sabaghan, M., Kahvaz, M. S., Pashmforosh, M., & Foroutan, M. (2021). The probable association between chronic Toxoplasma gondii infection and type 1 and type 2 diabetes mellitus: a case-control study. Interdisciplinary perspectives on infectious diseases, 2021, 1-6. https://doi.org/10.1155/2021/2508780.
Ahmadikia, S.J. Hashemi, S. Khodavaisy, M.I. Getso, N. Alijani, H. Badali, et al.The double-edged sword of systemic corticosteroid therapy in viral pneumonia: a case report and comparative review of influenza-associated mucormycosis versus COVID-19 associated mucormycosis Mycoses, 64 (8) (2021), pp. 798-808. https://doi.org/10.1111/myc.13256
Lewis, J. M., Clifford, S., & Nsutebu, E. (2015). Toxoplasmosis in immunosuppressed patients. Rheumatology, 54(11), 1939-1940.? https://doi.org/10.1093/rheumatology/kev115.
Shapira, Y., Agmon-Levin, N., Selmi, C., Petríková, J., Barzilai, O., Ram, M., ... & Shoenfeld, Y. (2012). Prevalence of anti-Toxoplasma antibodies in patients with autoimmune diseases. Journal of autoimmunity, 39(1-2), 112-116https://doi.org/10.1016/j.jaut.2012.01.001
Dubey JP (1998) Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Vet Parasitol 74:75-77. https://doi.org/10.1016/S0304-4017(97)00135-12.Yamagami T, Miwa A, Takasawa S, Yamamoto H. Introduction of rats pancreatic –B-cell tumour by the combined administration of streptozotocin or alloxan and poly (adenosine diphosphate ribose) synthetase inhibitors. Cancer Res.1985; 45:1845-1849
Rahman, S. S., Yasmin, N., Rahman, A. T. M. M., Zaman, A., Rahman, M. H., & Rouf, S. M. A. (2017). Evaluation and optimization of effective-dose of alloxan for inducing type-2 diabetes mellitus in long evans rat. Indian J Pharmaceutical Education and Research, 51(4), 661-6.10.5530/ijper.51.4s.96
Brosius, F., 2019. Low-Dose Streptozotocin Induction Protocol (mouse) V.2.
https://doi.org/10.17504/protocols.io.8izhuf6
Shahid, M., Subhan, F., Ahmad, N. and Sewell, R.D., 2019. Efficacy of atopical gabapentin gel in a cisplatin paradigm of chemotherapyinduced peripheral neuropathy. BMC Pharmacology and Toxicology, 20(1), pp.1-https://doi.org/10.1186/s40360-019-0329-3
Kennard, M.R., Daniels Gatward, L.F., Roberts, A.G., White, E.R., Nandi, M. and King, A.J., 2021. The use of mice in diabetes research: The impact of experimental protocols. Diabetic Medicine, 38(12), p.e14705. https://doi.org/10.1111/dme.14705
Al-Hayali, Sabah Saeed (2002). experimental study on Toxoplasma gondii isolates from human placentas and evaluating the efficiency of a number of antibiotics in their new treatment in mice, Nineveh Governorate (Doctoral dissertation), College of Science, biology, University of Mosul, Iraq, https://library.alkafeel.net/dic.
Parasuraman, S., Balamurugan, S., Christapher, P.V., Petchi, R.R., Yeng, W.Y., Sujithra, J. and Vijaya, C., 2015. Evaluation of antidiabetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents. Pharmacognosy research, 7(2), p.156. Pari, L., Karthikesan, K. and Menon, V.P., 2010. https://doi.org/10.4103%2F0974-8490.151457
Soares, G. L. D. S., Leão, E. R. L. P. D., Freitas, S. F., Alves, R. M. ?., Tavares, N. D. P., Costa, M. V. N., ... & Diniz, C. W. P. (2022). Behavioral and neuropathological changes after Toxoplasma gondii ocular conjunctival infection in BALB/c Mice. Frontiers in Cellular and Infection Microbiology, 181. https://doi.org/10.3389/fcimb.2022.812152.
Ulvi, H., Yoldas, T., Müngen, B. and Yigiter, R., 2002. Continuous infusion of midazolam in the treatment of refractory generalized convulsive status epilepticus. Neurological Sciences, 23, pp.177-182. https://doi.org/10.1007/s100720200058.
Trinder, P., 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of clinical Biochemistry, 6(1), pp.24-27.
https://doi.org/10.1177/000456326900600108.
Gatkowska, J., Wieczorek, M., Dziadek, B., Dzitko, K., & Dlugonska, H. (2012). Behavioral changes in mice caused by Toxoplasma gondii invasion of brain. Parasitology research, 111, 53-58.https://doi.org/10.1007/s00436-011-2800-y.
Doghish, A. S., Ali, M. A., Elrebehy, M. A., Mohamed, H. H., Mansour, R., Ghanem, A., ... & Abulsoud, A. I. (2023). The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathology-Research and Practice, 250, 154790.?
https://doi.org/10.1016/j.prp.2023.154790.
Smith, N. C., Goulart, C., Hayward, J. A., Kupz, A., Miller, C. M., & van Dooren, G. G. (2021). Control of human toxoplasmosis. International Journal for Parasitology, 51(2-3), 95-121. https://doi.org/10.1016/j.ijpara.2020.11.001.
Nosaka, K., Hunter, M., & Wanga, W. (2018). A systemic review and meta-analysis of humacase-control studies examining the association between Toxoplasma gondii and type 2 diabetes mellitus. American Journal of Life Science Researches, 6(3), 106-122.?????.
Shirbazou, S., Delpisheh, A., Mokhetari, R., & Tavakoli, G. (2013). Serologic detection of anti Toxoplasma gondii infection in diabetic patients. Iranian Red Crescent Medical Journal, 15(8), 701. https://doi.org/10.5812%2Fircmj.5303.
Nosaka, K., Hunter, M., & Wang, W. (2016). The role of Toxoplasma gondii as a possible inflammatory agent in the pathogenesis of type 2 diabetes mellitus in humans. Family Medicine and Community Health, 4(4), 44-62. https://doi.org/10.15212/FMCH.2016.0128
Li, Y. X., Xin, H., Zhang, X. Y., Wei, C. Y., Duan, Y. H., Wang, H. F., & Niu, H. T. (2018). Toxoplasma gondii infection in diabetes mellitus patients in China: Seroprevalence, risk factors, and case-control studies. BioMed research international, 2018. https://doi.org/10.1155/2018/4723739.
Nassief Beshay, E.V.; El-Refai, S.A.; Helwa, M.A.; Atia, A.F.; Dawoud, M.M. Toxoplasma gondii as a possible causative pathogen of type-1 diabetes mellitus: Evidence from case-control and experimental studies. Exp. Parasitol. 2018, 188, 93–101. [PubMed] https://doi.org/10.1016/j.exppara.2018.04.007.
Beale EG. Insulin signaling and insulin resistance. J Investig Med. 2013;61(1):11–14.View this article via: PubMed . https://doi.org/10.2310/JIM.0b013e3182746f95.
Sharma, P.; Behi, T.; Sharma, N.; Singh, S.; Grewal, A.S.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Bungau, S. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality. Biomed. Pharmacother. 2022, 151, 113089 https://doi.org/10.1016/j.biopha.2022.11308.
Calvet, H.M.; Yoshikawa, T.T. Infections in diabetes. Infect. Dis. Clin. N. Am. 2001, 15, 407–421. https://doi.org/10.1016/S0891-5520(05)70153-7.
Elkholy A, Omar R, Elbadawy A, Elawady M, Abou-Ouf E. Investigating the potential link between seroprevalence of Toxoplasma IgG and both types of diabetes mellitus in Benha city, Egypt. Parasitol United J 2022;15:195-201. 10.21608/puj.2022.147655.1174.
Molan A-L, Ismail MH. Study the possible association between toxoplasmosis and diabetes mellitus in Iraq. World J Pharm Pharm Sci 2017;6:85-96. 10.20959/wjpps20173-8721
Moutschen, M.P.; Scheen, A.J.; Lefebvre, P.J. Impaired immune responses in diabetes mellitus: Analysis of the factors and mechanisms involved. Relevance to the increased susceptibility of diabetic patients to specific infections. Diabete Metab. 1992, 18, 187–201.
Hassanain, M. A., El-Fadaly, H. A., & Hassanain, N. A. (2014). Toxoplasma gondii parasite load elevation in diabetic rats as latent opportunistic character. Annals of Tropical Medicine and Public Health, 7(2), 110-115. 10.4103/1755-6783.146396.
Boothroyd JC. Toxoplasma gondii: 25 years and 25 major advances for the fi eld. Int J Parasitol 2009;39:935-46. https://doi.org/10.1016/j.ijpara.2009.02.003.
Tenter AM, Hec keroth AR, Weiss LM. Toxoplasma gondii: From animals to humans. Int J Parasitol 2000;30:1217-58. https://doi.org/10.1016/S0020-7519(00)00124-7
Buxton D. Ovine toxoplasmosis: A review. J R Soc Med 1990;83: 509-11Tenter AM, Hec keroth AR, Weiss LM. Toxoplasma gondii: From animals to humans. Int J Parasitol 2000;30:1217-58.https://doi.org/10.1177/014107689008300813.