The Histopathological & Behavioral Changes on Mice Experimentally Infected with Toxoplasma Gondii

Authors

  • Reeda Hamoo Dept. of Biology, College of Education for Girls, University of Mosul
  • Zainab Nawaf Al-Tai Department of Biology, College of Education for Girls, University of Mosul, Mosul, Iraq

DOI:

https://doi.org/10.56286/ntujavs.v3i2.508

Keywords:

Toxoplasmosis ,Histopathological changes ,Toxoplasma gondii , hippocampus , amygdala

Abstract

 Toxoplasmosis is one of the most important and common zoonotic diseases worldwide with an infection rate ranging between 20-80% of the world’s population. The affecting in a wide range of mammals, including humans, causes significant disease effects on human health and economic animals. The parasite has an amazing ability to spread within the host’s body and uses various strategies to overcome the blood-brain barrier, with the ability to exist for life within the cells of the infected host. The current study aimed at following up the histopathological changes in the brain of mice experimentally infected with toxoplasmosis. A placenta samples were collected from Al-Salam Teaching Hospital in Mosul, and the parasite was isolated and injection of 100 tissue cyst into the peritoneal cavity of laboratory mice. The animals were divided into three groups, and the mice were dissected after 21, 30 and 40 days of infection period in order to study histopathological changes in the cortex, hippocampus and amygdala. The results of the numbers of parasite cysts in the hippocampus, amygdala and cortex showed an increase in the number of parasite cysts in the cortex compared with the hippocampus and amygdala, the histological sections showed in addition to vacuolar degenerative changes and Apoptosis. After 30 days of infection, the results showed a decrease in body weight in males. The histological sections showed necrosis of the granular cell layer, edema around the nerve axons. The results of the third group, after 40 days of infection, showed a decrease in body weight in males and females compared with the control group and an increase in brain weight in males. The histological sections showed the loss of nuclei in the cells of the basal medial nuclei, vacuolar degeneration, in addition to the presence of vacuolization.

References

Reference

Tedford, E., Badya, N. B., Laing, C., Asaoka, N., Kaneko, S., Filippi, B. M., & McConkey, G. A. (2023). Infection-induced extracellular vesicles evoke neuronal transcriptional and epigenetic changes. Scientific Reports, 13(1), 6913.?

Galeh, T. M., Ghazvini, H., Mohammadi, M., Sarvi, S., Azizi, S., Asgarian-Omran, H., ... & Daryani, A. (2023). Effects of diverse Types of Toxoplasma gondii on the outcome of Alzheimer's disease in the rat model. Microbial Pathogenesis, 174, 105931.

Di Cristina, M., Marocco, D., Galizi, R., Proietti, C., Spaccapelo, R., & Crisanti, A. (2008). Temporal and spatial distribution of Toxoplasma gondii differentiation into bradyzoites and tissue cyst formation in vivo. Infection and immunity, 76(8), 3491-3501.?

Ahmadpour, E., Babaie, F., Kazemi, T., Mehrani Moghaddam, S., Moghimi, A., Hosseinzadeh, R., ... & Pagheh, A. S. (2023). Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells. Pathogens, 12(2), 253.?

Wang, T., Tang, Z. H., Li, J. F., Li, X. N., Wang, X., & Zhao, Z. J. (2013). A potential association between Toxoplasma gondii infection and schizophrenia in mouse models. Experimental parasitology, 135(3), 497-502.

Berenreiterova, M., Flegr, J., Kub?na, A. A., & N?mec, P. (2011). The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PloS one, 6(12), e28925.

Gulinello, M., Acquarone, M., Kim, J. H., Spray, D. C., Barbosa, H. S., Sellers, R., ... & Weiss, L. M. (2010). Acquired infection with Toxoplasma gondii in adult mice results in sensorimotor deficits but normal cognitive behavior despite widespread brain pathology. Microbes and infection, 12(7), 528-537.?

Evans, A. K., Strassmann, P. S., Lee, I. P., & Sapolsky, R. M. (2014). Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats. Brain, behavior, and immunity, 37, 122–133.

Gatkowska, J., Wieczorek, M., Dziadek, B., Dzitko, K., & Dlugonska, H. (2012). Behavioral changes in mice caused by Toxoplasma gondii invasion of brain. Parasitology research, 111, 53-58.

Fond, G., Boyer, L., Schürhoff, F., Berna, F., Godin, O., Bulzacka, E.,... & Zinetti-Bertschy, A. (2018). Latent toxoplasma infection in real-world schizophrenia: results from the national FACE-SZ cohort. Schizophrenia research, 201, 373-380.?

Wang, T., Sun, X., Qin, W., Zhang, X., Wu, L., Li, Y., ... & Cong, H. (2019). From inflammatory reactions to neurotransmitter changes: implications for understanding the neurobehavioral changes in mice chronically infected with Toxoplasma gondii. Behavioural brain research, 359, 737-748.

Inestrosa, N. C., Tapia-Rojas, C., Cerpa, W., Cisternas, P., & Zolezzi, J. M. (2021). WNT signaling is a key player in Alzheimer’s disease. In Pharmacology of the WNT Signaling System (pp. 357-382). Cham: Springer International Publishing.?

Carruthers, V. B., & Suzuki, Y. (2007). Effects of Toxoplasma gondii infection on the brain. Schizophrenia bulletin, 33(3), 745–751.

Ferguson, D. J., & Hutchison, W. M. (1987). An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitology research, 73(6), 483–491.

Hermes, G., Ajioka, J. W., Kelly, K. A., Mui, E., Roberts, F., Kasza, K., ... & McLeod, R. (2008). Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. Journal of neuroinflammation, 5, 1-37.?

Stahl, W., Kaneda, Y., & Noguchi, T. (1994). Reproductive failure in mice chronically infected with Toxoplasma gondii. Parasitology research, 80(1), 22–28.

Gatkowska, J., Hiszczynska-Sawicka, E., Kur, J., Holec, L., & Dlugonska, H. (2006). Toxoplasma gondii: an evaluation of diagnostic value of recombinant antigens in a murine model. Experimental parasitology, 114(3), 220-227.?

Hrda, S., Votypka, J., Kodym, P., & Flegr, J. (2000). Transient nature of Toxoplasma gondii-induced behavioral changes in mice. The Journal of parasitology, 86(4), 657–663.

Skallova, A., Kodym, P., Frynta, D., & Flegr, J. (2006). The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology, 133(Pt 5), 525–535.

Castaño Barrios, L., Da Silva Pinheiro, A. P., Gibaldi, D., Silva, A. A., Machado Rodrigues e Silva, P., Roffê, E., ... & Lannes-Vieira, J. (2021). Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. Plos one, 16(10), e0258199.?

Dubey, J. P., Ferreira, L. R., Alsaad, M., Verma, S. K., Alves, D. A., Holland, G. N., & McConkey, G. A. (2016). Experimental toxoplasmosis in rats induced orally with eleven strains of Toxoplasma gondii of seven genotypes: tissue tropism, tissue cyst size, neural lesions, tissue cyst rupture without reactivation, and ocular lesions. PloS one, 11(5), e0156255.?

Figueiredo, C. A., Düsedau, H. P., Steffen, J., Ehrentraut, S., Dunay, M. P., Toth, G., ... & Dunay, I. R. (2022). The neuropeptide PACAP alleviates T. gondii infection-induced neuroinflammation and neuronal impairment. Journal of Neuroinflammation, 19(1), 1-17.

Luna LG (1968) Manual of histological staining methods of the armed forces institute of pathology, 3rd ed., New York: McGraw Hill Bock Company., 38-76.

Ortiz-Guerrero, G., Gonzalez-Reyes, R. E., de-la-Torre, A., Medina-Rincón, G., & Nava-Mesa, M. O. (2020). Pathophysiological mechanisms of cognitive impairment and neurodegeneration by Toxoplasma gondii infection. Brain Sciences, 10(6), 369.?

Atmaca, H. T., Kul, O., Karaku?, E., Terzi, O. S., Canpolat, S., & Anteplio?lu, T. (2014). Astrocytes, microglia/macrophages, and neurons expressing Toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection. Neuroscience, 269, 184–191.

Koshy, A. A., Fouts, A. E., Lodoen, M. B., Alkan, O., Blau, H. M., & Boothroyd, J. C. (2010). Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions. Nature methods, 7(4), 307–309.

Wohlfert, E. A., Blader, I. J., & Wilson, E. H. (2017). Brains and brawn: toxoplasma infections of the central nervous system and skeletal muscle. Trends in parasitology, 33(7), 519-531.?

Sanecka, A., & Frickel, E. M. (2012). Use and abuse of dendritic cells by Toxoplasma gondii. Virulence, 3(7), 678-689.?

Liu, Q., Wang, Z. D., Huang, S. Y., & Zhu, X. Q. (2015). Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites & vectors, 8, 1-14.

Dubey JP (1998) Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Vet Parasitol 74:75- 77.

Al Hayali, Sabah Saeed (2002). An experimental study on Toxoplasma gondii isolates from human placentas and evaluating the efficacy of a number of antibiotics in its novel treatment in mice, Nineveh Governorate. (PhD thesis) College of Science, biology , University of Mosul, Iraq.

Dubey, J. P. (2008). The history of Toxoplasma gondii—the first 100 years. Journal of eukaryotic microbiology, 55(6), 467-475.?

Yin, K., Xu, C., Zhao, G., & Xie, H. (2022). Epigenetic Manipulation of Psychiatric Behavioral Disorders Induced by Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 12, 59.?

Additional Files

Published

2023-08-12

How to Cite

The Histopathological & Behavioral Changes on Mice Experimentally Infected with Toxoplasma Gondii. (2023). NTU Journal of Agriculture and Veterinary Science, 3(2). https://doi.org/10.56286/ntujavs.v3i2.508