Evaluation the mechanisms action of plant growth promoting rizobacteria under laboratory condition

Authors

  • Najwa I. khaleel Department of Biology / College of Education for Pure Science / University of Mosul, Iraq
  • Marwa A. Nayef Department of Biology / College of Education for Pure Science / University of Mosul, Iraq

DOI:

https://doi.org/10.56286/xhfwyj96

Keywords:

indole-3-acetic acid (IAA), phosphate solubilization, rhizobacteria, siderophore,

Abstract

This research was conducted to evaluate the efficiency of some mechanisms of rhizobacteria that promote plant growth and to recommend their use as biofertilizers. Therefore, atmospheric nitrogen-fixing bacteria were isolated from the root nodules of six legume species (Vicia faba, Trifolium repens, Lens culinaris, Trigonella foenum-graecum, Lens culinaris subsp orientalis and Medicago sativa). These isolates were positive for most biochemical tests (Urease production, Congo red capture, Bromothymol blue capture, Lactose fermentation and Growth on glucose peptone agar), as well as to test the results of the effect of direct (nitrogenase activity, phosphate solubilization and indol production) and indirect (siderophore production) mechanisms. This indicates their effectiveness in providing the plant with necessary elements. All isolates were able to produce indole acetic acid (IAA) at varying levels. The ability of the legume isolate (MA6) to grow on glucose-peptone agar may indicate that it is not a Rhizobium, unlike the other five isolates. After detection of the 16S rRNA gene sequence of this isolate, it was found with 95% similarity to the global isolate Serratia surfactantfacien strain YD25 registered in GenBank. These results can contribute to recommend the necessity of using these isolates as well as emphasizing the use of the S. surfactantfacien isolate, to promote plant growth as a green and environmentally friendly biofertilizer to sustainably improve agricultural production.

References

Alazhar, C., & Aruna, K. (2020). Microbial Siderophores: A Prospective Tool for Strategic Medical Interventions. Ind. J. Pure App. Biosci, 8(6), 34-45.

Al-Barhawee, N. I. K., & Ahmed, J. M. (2022). Using Sequencing Technique for Diagnostic Different Species of Genus Rhizobium Which Isolated from Legume Plants. Iraqi Journal of Science, 4213-4224.

Al-Mansor, K. J. A., & Thaher, A. Z. T. (2020). Isolation and Diagnosis of Rhizobium of Cowpea Plant and their Efficiency in Host Plant Infection and Nitrogen Fixation. International Journal of Agricultural and Statistical Sciences, 16(2), 641-645.

Bai, Y. C., Chang, Y. Y., Hussain, M., Lu, B., Zhang, J. P., Song, X. B., & Pei, D. (2020). Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms, 8(5), 694.

Banba, M., Siddique, A. B. M., Kouchi, H., Izui, K., & Hata, S. (2001). Lotus japonicus forms early senescent root nodules with Rhizobium etli. Molecular Plant-Microbe Interactions, 14(2), 173-180.

Barman, S., Bhattacharya, S. S., & Mandal, N. C. (2020). Serratia. In Beneficial Microbes in Agro-Ecology (pp. 27-36). Academic Press.

Beck, D. P., Materon, L. A., & Afandi, F. (1993). Practical Rhizobium Legume Technology Manual, vol. 19. Technical Manual International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.

Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K. and Madden, T. L. (2009). BLAST+: architecture and applications. BMC 91 Bioinformatics, 10(1), 421.

Chauhan, P., Sharma, N., Tapwal, A., Kumar, A., Verma, G. S., Meena, M., ... & Swapnil, P. (2023). Soil microbiome: diversity, benefits and interactions with plants. Sustainability, 15(19), 14643.

Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., & Ma, Y. (2023). Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of The Total Environment, 166468.

Chepsergon, J., & Moleleki, L. N. (2023). Rhizosphere bacterial interactions and impact on plant health. Current Opinion in Microbiology, 73, 102297.

Deb, C. R., & Tatung, M. (2024). Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review. South African Journal of Botany, 165, 153-162.

Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157(3), 361-379.

Fahde, S., Boughribil, S., Sijilmassi, B., & Amri, A. (2023). Rhizobia: a promising source of plant growth-promoting molecules and their non-legume interactions: examining applications and mechanisms. Agriculture, 13(7), 1279.

Ganesh, J., Hewitt, K., Devkota, A. R., Wilson, T., & Kaundal, A. (2024). IAA-producing plant growth promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. Frontiers in Plant Science, 15, 1374877.

García-Berumen, J. A., de la Torre, J. A. F., de Los Santos-Villalobos, S., Espinoza-Canales, A., Echavarría-Cháirez, F. G., & Gutiérrez-Bañuelos, H. (2024). Phosphorus dynamics and sustainable agriculture: The role of microbial solubilization and innovations in nutrient management. Current Research in Microbial Sciences, 100326.

Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and environmental microbiology, 61(2), 793-796.

Hamada, M. A., and Soliman, E. R. S. (2023). Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiol. 23:210. doi: 10.1186/s12866-023-02941-7.

Han, B., Yang, F., Shen, S., Li, Z., & Zhang, K. (2024). Soil metabolic processes influenced by rice roots co-regulates the environmental evolution of antibiotic resistome. Environment International, 193, 109116.

Hasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2), 59-75.

Lata, D. L., Abdie, O., & Rezene, Y. (2024). IAA-producing bacteria from the rhizosphere of chickpea (Cicer arietinum L.): Isolation, characterization, and their effects on plant growth performance. Heliyon, 10(21).

Molnár, Z., Solomon, W., Mutum, L., & Janda, T. (2023). Understanding the mechanisms of Fe deficiency in the rhizosphere to promote plant resilience. Plants, 12(10), 1945.

Mubarik, N. R., Mahagiani, I., & Wahyudi, A. T. (2013). Production of IAA by Bradyrhizobium sp. In Proceedings of World Academy of Science, Engineering and Technology (No. 74, p. 152). World Academy of Science, Engineering and Technology (WASET).

Muthini, M., Maingi, J. M., Muoma, J. O., Amoding, A., Mukaminega, D., Osoro, N., & Ombori, O. (2013). Morphological assessment and effectiveness of indigenous rhizobia isolates that nodulate P. vulgaris in water hyacinth compost testing field in Lake Victoria basin. 4 718–738. 10.9734/BJAST/2014/5757.

Ning, X., Lin, M., Huang, G., Mao, J., Gao, Z., & Wang, X. (2023). Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 14, 1190768.

Ole?ska, E., Ma?ek, W., Wójcik, M., Swiecicka, I., Thijs, S., & Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 743, 140682.

Othman, M. A., El-Zamik, F. I., Hegazy, M. I., & Salama, A. S. A. (2019). Isolation and identification of egyptian strains of Serratia marcescens producing antibacterial and antioxidant prodigiosin pigment. Zagazig Journal of Agricultural Research, 46(5), 1573-1582.

Pan, L., & Cai, B. (2023). Phosphate-solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms, 11(12), 2904.

Pankievicz, V. C. S., do Amaral, F. P., Ané, J. M., & Stacey, G. (2021). Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Molecular Plant-Microbe Interactions, 34(5), 491-498.

Pervin, S., Jannat, B., & Al Sanjee, S. (2017). Characterization of Rhizobia from Root Nodule and Rhizosphere of Lablab purpureus and Vigna sinensis in Bangladesh. Turkish Journal of Agriculture-Food Science and Technology, 5(1), 14-17.

Rogozin, I. B., Saura, A., Poliakov, E., Bykova, A., Roche-Lima, A., Pavlov, Y. I., & Yurchenko, V. (2024). Properties and Mechanisms of Deletions, Insertions, and Substitutions in the Evolutionary History of SARS-CoV-2. International Journal of Molecular Sciences, 25(7), 3696.

Schaechter, M. (2009). Encyclopedia of microbiology. Academic Press.

Schwyn, B., & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56.

Singh, A., Yadav, V. K., Chundawat, R. S., Soltane, R., Awwad, N. S., Ibrahium, H. A., & Vicas, S. I. (2023). Enhancing plant growth promoting rhizobacterial activities through consortium exposure: a review. Frontiers in Bioengineering and Biotechnology, 11, 1099999.

Somasegaran, P., and Hoben, H.J. (1994). Handbook for Rhizobia: Methods in legume-Rhizobium Technology. Springer-Verlag, New York.

Sykes, J. E. (2014). Gram negative bacterial infections. Canine and Feline Infectious Diseases. Part II Major infectious diseases and their etiologic agents. Section, 2, 355-364.

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2024). How do plant growth-promoting bacteria use plant hormones to regulate stress reactions?. Plants, 13(17), 2371.

Trejo-López, J. A., Rangel-Vargas, E., Gómez-Aldapa, C. A., Villagómez-Ibarra, J. R., Falfán-Cortes, R. N., Acevedo-Sandoval, O. A., & Castro-Rosas, J. (2022). Isolation and molecular identification of Serratia strains producing chitinases, glucanases, cellulases, and prodigiosin and determination of their antifungal effect against Colletotrichum siamense and Alternaria alternata in vitro and on mango fruit. International Journal of Plant Biology, 13(3), 281-297.

Vincent, J.M. (1970) A Manual for the Practical Study of the Root-Nodule Bacteria. IBP Handbook No. 15, Blackwell Scientific, 164 p.

Vincent JM. (1974). Root-nodule symbiosis with Rhizobium. In: Quispel A (ed.). Biology of Nitrogen Fixation. North-Holland Publishing Co., Amsterdam.

Winn Washington, C., Allen, S. D., Janda, W. M., Koneman, E. W., Procop, G. W., Schreckenberger, P. C., & Woods, G. L. (2006). Koneman's Color Atlas and Textbook of Diagnostic Microbiolgy. Lippincott, Williams & Wilkins.

Yang, J., Lan, L., Jin, Y., Yu, N., Wang, D., & Wang, E. (2022). Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Biology, 64(2), 244-267.

Zhang, C., Yu, Z., Zhang, M., Li, X., Wang, M., Li, L., et al. (2022). Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. J. Exp. Bot. 73, 3711–3725. doi: 10.1093/jxb/erac074.

Additional Files

Published

2025-12-28

How to Cite

Evaluation the mechanisms action of plant growth promoting rizobacteria under laboratory condition. (2025). NTU Journal of Agriculture and Veterinary Science, 5(4). https://doi.org/10.56286/xhfwyj96

Similar Articles

1-10 of 31

You may also start an advanced similarity search for this article.