Laboratory study to evaluate the mechanisms action of plant growth promoting rhizobacteria
DOI:
https://doi.org/10.56286/xhfwyj96Keywords:
indole-3-acetic acid (IAA); phosphate; rhizobacteria; siderophoreAbstract
https://cv.uomosul.edu.iq/en/dr.najwa/en
References
Alazhar, C., & Aruna, K. (2020). Microbial Siderophores: A Prospective Tool for Strategic Medical Interventions. Ind. J. Pure App. Biosci, 8(6), 34-45.
Al-Barhawee, N. I. K., & Ahmed, J. M. (2022). Using Sequencing Technique for Diagnostic Different Species of Genus Rhizobium Which Isolated from Legume Plants. Iraqi Journal of Science, 4213-4224.
Al-Mansor, K. J. A., & Thaher, A. Z. T. (2020). Isolation and Diagnosis of Rhizobium of Cowpea Plant and their Efficiency in Host Plant Infection and Nitrogen Fixation. International Journal of Agricultural and Statistical Sciences, 16(2), 641-645.
Bai, Y. C., Chang, Y. Y., Hussain, M., Lu, B., Zhang, J. P., Song, X. B., & Pei, D. (2020). Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms, 8(5), 694.
Banba, M., Siddique, A. B. M., Kouchi, H., Izui, K., & Hata, S. (2001). Lotus japonicus forms early senescent root nodules with Rhizobium etli. Molecular Plant-Microbe Interactions, 14(2), 173-180.
Barman, S., Bhattacharya, S. S., & Mandal, N. C. (2020). Serratia. In Beneficial Microbes in Agro-Ecology (pp. 27-36). Academic Press.
Beck, D. P., Materon, L. A., & Afandi, F. (1993). Practical Rhizobium Legume Technology Manual, vol. 19. Technical Manual International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.
Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K. and Madden, T. L. (2009). BLAST+: architecture and applications. BMC 91 Bioinformatics, 10(1), 421.
Chauhan, P., Sharma, N., Tapwal, A., Kumar, A., Verma, G. S., Meena, M., ... & Swapnil, P. (2023). Soil microbiome: diversity, benefits and interactions with plants. Sustainability, 15(19), 14643.
Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., & Ma, Y. (2023). Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of The Total Environment, 166468.
Chepsergon, J., & Moleleki, L. N. (2023). Rhizosphere bacterial interactions and impact on plant health. Current Opinion in Microbiology, 73, 102297.
Deb, C. R., & Tatung, M. (2024). Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review. South African Journal of Botany, 165, 153-162.
Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157(3), 361-379.
Fahde, S., Boughribil, S., Sijilmassi, B., & Amri, A. (2023). Rhizobia: a promising source of plant growth-promoting molecules and their non-legume interactions: examining applications and mechanisms. Agriculture, 13(7), 1279.
Ganesh, J., Hewitt, K., Devkota, A. R., Wilson, T., & Kaundal, A. (2024). IAA-producing plant growth promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. Frontiers in Plant Science, 15, 1374877.
García-Berumen, J. A., de la Torre, J. A. F., de Los Santos-Villalobos, S., Espinoza-Canales, A., Echavarría-Cháirez, F. G., & Gutiérrez-Bañuelos, H. (2024). Phosphorus dynamics and sustainable agriculture: The role of microbial solubilization and innovations in nutrient management. Current Research in Microbial Sciences, 100326.
Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and environmental microbiology, 61(2), 793-796.
Hamada, M. A., and Soliman, E. R. S. (2023). Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiol. 23:210. doi: 10.1186/s12866-023-02941-7.
Han, B., Yang, F., Shen, S., Li, Z., & Zhang, K. (2024). Soil metabolic processes influenced by rice roots co-regulates the environmental evolution of antibiotic resistome. Environment International, 193, 109116.
Hasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2), 59-75.
Lata, D. L., Abdie, O., & Rezene, Y. (2024). IAA-producing bacteria from the rhizosphere of chickpea (Cicer arietinum L.): Isolation, characterization, and their effects on plant growth performance. Heliyon, 10(21).
Molnár, Z., Solomon, W., Mutum, L., & Janda, T. (2023). Understanding the mechanisms of Fe deficiency in the rhizosphere to promote plant resilience. Plants, 12(10), 1945.
Mubarik, N. R., Mahagiani, I., & Wahyudi, A. T. (2013). Production of IAA by Bradyrhizobium sp. In Proceedings of World Academy of Science, Engineering and Technology (No. 74, p. 152). World Academy of Science, Engineering and Technology (WASET).
Muthini, M., Maingi, J. M., Muoma, J. O., Amoding, A., Mukaminega, D., Osoro, N., & Ombori, O. (2013). Morphological assessment and effectiveness of indigenous rhizobia isolates that nodulate P. vulgaris in water hyacinth compost testing field in Lake Victoria basin. 4 718–738. 10.9734/BJAST/2014/5757.
Ning, X., Lin, M., Huang, G., Mao, J., Gao, Z., & Wang, X. (2023). Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 14, 1190768.
Ole?ska, E., Ma?ek, W., Wójcik, M., Swiecicka, I., Thijs, S., & Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 743, 140682.
Othman, M. A., El-Zamik, F. I., Hegazy, M. I., & Salama, A. S. A. (2019). Isolation and identification of egyptian strains of Serratia marcescens producing antibacterial and antioxidant prodigiosin pigment. Zagazig Journal of Agricultural Research, 46(5), 1573-1582.
Pan, L., & Cai, B. (2023). Phosphate-solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms, 11(12), 2904.
Pankievicz, V. C. S., do Amaral, F. P., Ané, J. M., & Stacey, G. (2021). Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Molecular Plant-Microbe Interactions, 34(5), 491-498.
Pervin, S., Jannat, B., & Al Sanjee, S. (2017). Characterization of Rhizobia from Root Nodule and Rhizosphere of Lablab purpureus and Vigna sinensis in Bangladesh. Turkish Journal of Agriculture-Food Science and Technology, 5(1), 14-17.
Rogozin, I. B., Saura, A., Poliakov, E., Bykova, A., Roche-Lima, A., Pavlov, Y. I., & Yurchenko, V. (2024). Properties and Mechanisms of Deletions, Insertions, and Substitutions in the Evolutionary History of SARS-CoV-2. International Journal of Molecular Sciences, 25(7), 3696.
Schaechter, M. (2009). Encyclopedia of microbiology. Academic Press.
Schwyn, B., & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56.
Singh, A., Yadav, V. K., Chundawat, R. S., Soltane, R., Awwad, N. S., Ibrahium, H. A., & Vicas, S. I. (2023). Enhancing plant growth promoting rhizobacterial activities through consortium exposure: a review. Frontiers in Bioengineering and Biotechnology, 11, 1099999.
Somasegaran, P., and Hoben, H.J. (1994). Handbook for Rhizobia: Methods in legume-Rhizobium Technology. Springer-Verlag, New York.
Sykes, J. E. (2014). Gram negative bacterial infections. Canine and Feline Infectious Diseases. Part II Major infectious diseases and their etiologic agents. Section, 2, 355-364.
Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2024). How do plant growth-promoting bacteria use plant hormones to regulate stress reactions?. Plants, 13(17), 2371.
Trejo-López, J. A., Rangel-Vargas, E., Gómez-Aldapa, C. A., Villagómez-Ibarra, J. R., Falfán-Cortes, R. N., Acevedo-Sandoval, O. A., & Castro-Rosas, J. (2022). Isolation and molecular identification of Serratia strains producing chitinases, glucanases, cellulases, and prodigiosin and determination of their antifungal effect against Colletotrichum siamense and Alternaria alternata in vitro and on mango fruit. International Journal of Plant Biology, 13(3), 281-297.
Vincent, J.M. (1970) A Manual for the Practical Study of the Root-Nodule Bacteria. IBP Handbook No. 15, Blackwell Scientific, 164 p.
Vincent JM. (1974). Root-nodule symbiosis with Rhizobium. In: Quispel A (ed.). Biology of Nitrogen Fixation. North-Holland Publishing Co., Amsterdam.
Winn Washington, C., Allen, S. D., Janda, W. M., Koneman, E. W., Procop, G. W., Schreckenberger, P. C., & Woods, G. L. (2006). Koneman's Color Atlas and Textbook of Diagnostic Microbiolgy. Lippincott, Williams & Wilkins.
Yang, J., Lan, L., Jin, Y., Yu, N., Wang, D., & Wang, E. (2022). Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Biology, 64(2), 244-267.
Zhang, C., Yu, Z., Zhang, M., Li, X., Wang, M., Li, L., et al. (2022). Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. J. Exp. Bot. 73, 3711–3725. doi: 10.1093/jxb/erac074.



