Effect of biochar of temperature and time differences on some chemical properties and available nutrients in Mosul city soil
DOI:
https://doi.org/10.56286/vc5g2s74Keywords:
Chemical Properties, Different Temperatures, Biochar, Different Times, Mosul CityAbstract
Wheat straws were pyrolyzed at 200°C, 400°C, and 600°C to create biochar. Experiments on biochar incubation with calcareous soil were carried out at 1, 2, 4, 6, and 8 g kg?1 for a maximum of 60 and 90 days at rates to silty loam. The soil's pH, EC, and CEC values were measured, in addition to its accessible N, P, and K. The availability of pH, EC, CEC, N, P, and K increased with the usage of biochar. The pH values ranged from 7.35 at 200°C for 60 days to 7.94 at 600°C for 90 days, while the electrical conductivity increased from 2.42(dS.m-1) at 200°C for 60 days to 4.65(dS.m-1) at 600°C for 90 days, and the cation exchange capacity values increased from 14.35 (Cmol. Kg -1)at 200°C for 60 days to 22.37 (Cmol. Kg -1)at 600°C for 90 days. Moreover, a significant increase in the availability of nutrients (N, P, and K) was observed, reaching 83(mg.Kg-1) at 200°C for 60 days to 107 (mg.Kg-1) at 600°C for 90 days, 34 (mg.Kg-1) at 200°C for 60 days to 54 (mg.Kg-1)at 600°C for 90 days,113 (mg.Kg-1) at 200°C for 60 days to 135 (mg.Kg-1)at 600°C for 90 day respectively. It was found that the correlation coefficient between soil properties with biochar levels ,temperature and Incubation period time for all soils was high and positive.
References
References
Naz, A., Rebi, A., Naz, R., Akbar, M. U., Aslam, A., Kalsom, A., ... & Zhou, J. (2023). Impact of green manuring on health of low fertility calcareous soils. Land, 12(3), 546.? https://doi.org/10.3390/land12030546
Mawlood, S. (2018). A comparative mineralogical study of some soils formed under varying climatic conditions from northern iraq. Mesopotamia Journal of Agriculture, 46(2), 72-81.? 10.33899/magrj.2018.161445
Aljumaily, M. M., Al-Hamandi, H. M., Al-Obaidi, M., & AL-Zidan, R. R. (2022). The effect of calcium carbonate content on the zinc quantity-intensity relationship in some soils of Mosul, Irak. Ciencia y Tecnología Agropecuaria, 23(1).? https://doi.org/10.21930/rcta.vol23_num1_art:2373
Chen, X., & Peng, Y. (2018). Managing clay minerals in froth flotation—A critical review. Mineral Processing and Extractive Metallurgy Review, 39(5), 289-307.? https://doi.org/10.1080/08827508.2018.1433175
Liu, Z., Zhang, Y., Sun, Y., Han, J., Hu, F., Li, J., & Li, X. (2023). Effects of the changes of particle surface electric field and interaction force on the reclaimed soil aggregate structural stability under the application of different soil conditioners. Agronomy, 13(7), 1866.? https://doi.org/10.3390/agronomy13071866
Noori, N. S., & Al-Hiyali, A. D. K. (2019). An economic analysis of determinants of wheat production support in Iraq for the period 1990-2016.? https://doi.org/10.36103/ijas.v50i4.747
Memon, S. A., Wahid, I., Khan, M. K., Tanoli, M. A., & Bimaganbetova, M. (2018). Environmentally friendly utilization of wheat straw ash in cement-based composites. Sustainability, 10(5), 1322.? https://doi.org/10.3390/su10051322
Tipayarom, D., & Oanh, N. K. (2007). Effects from open rice straw burning emission on air quality in the Bangkok Metropolitan Region. Sci. Asia, 33(3), 339-345.? doi: 10.2306/scienceasia1513-1874.2007.33.339
Dadhich, S. K., Yadav, G. K., Yadav, K., Kumawat, C., & Munalia, M. K. (2021). Recycling of Crop Residues for Sustainable Soil Health Management: A Review. International Journal of Plant & Soil Science, 66-75.? https://doi.org/10.9734/ijpss%2F2021%2Fv33i230528
Shanmugam, H., Raghavan, V., Rajagopal, R., Goyette, B., Lyu, L., Zhou, S., & An, C. (2024). Evaluating Sustainable Practices for Managing Residue Derived from Wheat Straw. Bioengineering, 11(6), 554.? https://doi.org/10.3390/bioengineering11060554
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82.? https://doi.org/10.1016/S0065-2113(10)05002-9
Elkhlifi, Z., Iftikhar, J., Sarraf, M., Ali, B., Saleem, M. H., Ibranshahib, I., ... & Chen, Z. (2023). Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: a review. Sustainability, 15(3), 2527.? https://doi.org/10.3390/su15032527
Sun, J., He, F., Pan, Y., & Zhang, Z. (2017). Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 67(1), 12-22.? https://doi.org/10.1080/09064710.2016.1214745
Qayyum, M. F., Haider, G., Iqbal, M., Hameed, S., Ahmad, N., ur Rehman, M. Z., ... & Ali, S. (2021). Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize. Chemosphere, 266, 128980.? https://doi.org/10.1016/j.chemosphere.2020.128980
Soil Survey Staff. (1999). Soil taxonomy: a basic system of soil classification for making and interpreting soil survey.2nd ed. (Agricultural Handbook 436. Natural Resource Conservation Service USDA, Washington, US Government Printing Office. pp. 869).
Page, A.L., Miller, R.H., Keeney, D.R. (1982). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., and Soil Science Society of America. Inc. Publisher, Madison, Wisconsin USA.
Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419-428.? https://doi.org/10.1016/j.biortech.2011.11.084
Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource technology, 131, 374-379.? https://doi.org/10.1016/j.biortech.2012.12.165
Khadem, A., & Raiesi, F. (2017). Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Applied Soil Ecology, 114, 16-27.? https://doi.org/10.1016/j.apsoil.2017.02.018
Naeem, M. A., Khalid, M., Aon, M., Abbas, G., Tahir, M., Amjad, M., ... & Akhtar, S. S. (2017). Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science, 63(14), 2048-2061.? https://doi.org/10.1080/03650340.2017.1325468
Liu, X. H., & Zhang, X. C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. International Journal of Agriculture & Biology, 14(5).? https://doi.org/ 10.5555/20123332330
Yuan, J. H., & Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil use and management, 27(1), 110-115.? https://doi.org/10.1111/j.1475-2743.2010.00317.x
Dume, B., Ayele, D., Regassa, A., & Barecha, G. (2016). Interactive effects of biochar in soil related to feedstock and pyrolysis temperature. American–Eurasian Journal of Agricultural and Environmental Sciences, 16, 442-448.? DOI: 10.5829/idosi.aejaes.2016.16.3.12880
Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil science, 174(2), 105-112.? DOI: 10.1097/SS.0b013e3181981d9a
Song, D., Tang, J., Xi, X., Zhang, S., Liang, G., Zhou, W., & Wang, X. (2018). Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. European Journal of Soil Biology, 84, 1-10.? https://doi.org/10.1016/j.ejsobi.2017.11.003
Beheshti, M., Etesami, H., & Alikhani, H. A. (2018). Effect of different biochars amendment on soil biological indicators in a calcareous soil. Environmental Science and Pollution Research, 25, 14752-14761.?
https://doi.org/10.1007/s11356-018-1682-2
Khadem, A., & Raiesi, F. (2017). Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Applied Soil Ecology, 114, 16-27.? https://doi.org/10.1016/j.apsoil.2017.02.018
Amin, A. E. E. A. Z., & Eissa, M. A. (2017). Biochar effects on nitrogen and phosphorus use efficiencies of zucchini plants grown in a calcareous sandy soil. Journal of soil science and plant nutrition, 17(4), 912-921.? http://dx.doi.org/10.4067/S0718-95162017000400006
Cheng, C. H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et cosmochimica acta, 72(6), 1598-1610.? https://doi.org/10.1016/j.gca.2008.01.010
Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and fertility of soils, 35, 219-230.? https://doi.org/10.1007/s00374-002-0466-4
Zhang, L., Jing, Y., Chen, C., Xiang, Y., Rezaei Rashti, M., Li, Y., ... & Zhang, R. (2021). Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta?analysis of field studies. GCB Bioenergy, 13(12), 1859-1873.? https://doi.org/10.1111/gcbb.12898
Wang, T., Arbestain, M. C., Hedley, M., & Bishop, P. (2012). Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Organic Geochemistry, 51, 45-54.? https://doi.org/10.1016/j.orggeochem.2012.07.009
Aon, M., Aslam, Z., Hussain, S., Bashir, M. A., Shaaban, M., Masood, S., ... & Hatamleh, A. A. (2023). Wheat straw biochar produced at a low temperature enhanced maize growth and yield by influencing soil properties of typic calciargid. Sustainability, 15(12), 9488.? https://doi.org/10.3390/su15129488
Glaser, B., & Lehr, V. I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific reports, 9(1), 9338.? doi: 10.1038/s41598-019-45693-z
Purkaystha, J., Prasher, S., Afzal, M. T., Nzediegwu, C., & Dhiman, J. (2022). Wheat straw biochar amendment significantly reduces nutrient leaching and increases green pepper yield in a less fertile soil. Environmental Technology & Innovation, 28, 102655.? https://doi.org/10.1016/j.eti.2022.102655
Qayyum, M. F., Haider, G., Raza, M. A., Mohamed, A. K. S., Rizwan, M., El-Sheikh, M. A., ... & Ali, S. (2020). Straw-based biochar mediated potassium availability and increased growth and yield of cotton (Gossypium hirsutum L.). Journal of Saudi Chemical Society, 24(12), 963-973.? https://doi.org/10.1016/j.jscs.2020.10.004