Zearalenone toxins produced by some species of Fusarium
DOI:
https://doi.org/10.56286/bb44fh80Keywords:
Mycotoxins, Fusarium, Zeralenone, Estrogen receptors.Abstract
Mycotoxins or fungal toxins are secondary metabolism comounds of filamentous fungi that are released at the end of the growth phase of particular species of Fusarium spp., Aspergillus spp., Penicillium spp. They are generated in hot and humid conditions. These toxins are included the most usual groups of food pollutants. Of the 400 kinds of mycotoxins identified, about 20 of them are considered a global threat to human being and animal health. Because these toxins can modify the food chain in different stages of planting, collecting, packing and processing. Zearalenone is a kind of mycotoxin created by the fungi Fusarium genus. They are found more in grains for instance corn, barley, wheat, oats and sorghum and have estrogenic effects on different organisms. Zeralenone is quickly absorbed and by binding to estrogen receptors, it disrupts the quantity of reproductive hormones. In this article, we review information on zearalenone generated by certain Fusarium species.
References
Kumar, R., Mishra, A. K., Dubey, N. K., & Tripathi, Y. B. (2007). Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. International journal of food microbiology, 115(2), 159-164.
Bennett, J. W. (2003). Klich. M. Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516.
Wild, C. P., & Gong, Y. Y. (2010). Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis, 31(1), 71-82.
Smith, J. E., Solomons, G., Lewis, C., & Anderson, J. G. (1995). Role of mycotoxins in human and animal nutrition and health. Natural toxins, 3(4), 187-192.
Yazar, S., & Omurtag, G. Z. (2008). Fumonisins, trichothecenes and zearalenone in cereals. International Journal of Molecular Sciences, 9(11), 2062-2090.
Smith, J. E., Solomons, G. L., Lewis, C. W., & Anderson, J. G. (1994). Mycotoxins in human nutrition and health. European Commision, Directorate-General XII, Science. Research and Development. EUY16048EN, Brussels, Belgium.
SCOOP (European Commission, Directorate-General Health and Consumer Protection- Scientific Co-Operation on Questions relating to Food) SCOOP, Task 3.2.10. Collection of Occurrence Data of Fusarium Toxins in Food and Assessment of Dietary Intake by the Populstion of EU Member States. European Commission, Directorate-General Health and Consumer Protection, Reports on Tasks Forscientific Co-Operation. European Commission, Directorate-General Health and Consumer Protection; Brussel, Belgium: 2003.
Batt, C. A., & Tortorello, M. L. (2014). Encyclopedia of food microbiology. (No Title).
Gupta, R. C. (Ed.). (2012). Veterinary toxicology: basic and clinical principles. Academic press.
Mizutani, K., Nagatomi, Y., & Mochizuki, N. (2011). Metabolism of zearalenone in the course of beer fermentation. Toxins, 3(2), 134-141.
Mally, A., Solfrizzo, M., & Degen, G. H. (2016). Biomonitoring of the mycotoxin Zearalenone: Current state-of-the art and application to human exposure assessment. Archives of toxicology, 90, 1281-1292.
Urry, W. H., Wehrmeister, H. L., Hodge, E. B., & Hidy, P. H. (1966). The structure of zearalenone. Tetrahedron Letters, 7(27), 3109-3114.
EFSA Panel on Contaminants in the Food Chain. (2011). Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA Journal, 9(6), 2197.
Alshannaq, A., & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International journal of environmental research and public health, 14(6), 632.
Takemura, H., Shim, J. Y., Sayama, K., Tsubura, A., Zhu, B. T., & Shimoi, K. (2007). Characterization of the estrogenic activities of zearalenone and zeranol in vivo and in vitro. The Journal of steroid biochemistry and molecular biology, 103(2), 170-177.
Urraca, J. L., Marazuela, M. D., & Moreno-Bondi, M. C. (2004). Analysis for zearalenone and ?-zearalenol in cereals and swine feed using accelerated solvent extraction and liquid chromatography with fluorescence detection. Analytica Chimica Acta, 524(1-2), 175-183.
Evans, J., Levesque, D., De Lahunta, A., & Jensen, H. E. (2004). Intracranial fusariosis: a novel cause of fungal meningoencephalitis in a dog. Veterinary pathology, 41(5), 510-514.
Nelson, P. E., Dignani, M. C., & Anaissie, E. J. (1994). Taxonomy, biology, and clinical aspects of Fusarium species. Clinical microbiology reviews, 7(4), 479-504.
Elvers, K. T., Leeming, K., Moore, C. P., & Lappin?Scott, H. M. (1998). Bacterial?fungal biofilms in flowing water photo?processing tanks. Journal of Applied Microbiology, 84(4), 607-618.
Ekwomadu, T. I., & Mwanza, M. (2015). ADECADE OF MYCOTOXINS RESEARCH IN AFRICA: AREVIEW. OCCURRENCE, TOXICOLOGY AND MANAGEMENT STRATEGIES, 169.
Zhou, T., He, J., & Gong, J. (2008). Microbial transformation of trichothecene mycotoxins. World Mycotoxin Journal, 1(1), 23-30.
Foroud, N. A., Baines, D., Gagkaeva, T. Y., Thakor, N., Badea, A., Steiner, B., ... & Bürstmayr, H. (2019). Trichothecenes in cereal grains–an update. Toxins, 11(11), 634.
Wu, Q., Huang, L., Liu, Z., Yao, M., Wang, Y., Dai, M., & Yuan, Z. (2011). A comparison of hepatic in vitro metabolism of T-2 toxin in rats, pigs, chickens, and carp. Xenobiotica, 41(10), 863-873.
Shank, R. A., Foroud, N. A., Hazendonk, P., Eudes, F., & Blackwell, B. A. (2011). Current and future experimental strategies for structural analysis of trichothecene mycotoxins—A prospectus. Toxins, 3(12), 1518-1553.
Desjardins, A. E. (2006). Fusarium mycotoxins: chemistry, genetics, and biology. American Phytopathological Society (APS Press).
Thrane, U., Adler, A., Clasen, P. E., Galvano, F., Langseth, W., Lew, H., ... & Ritieni, A. (2004). Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. International Journal of Food Microbiology, 95(3), 257-266.
Rocha, O., Ansari, K., & Doohan, F. M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food additives and contaminants, 22(4), 369-378.
Eriksen, G. S., & Pettersson, H. (2004). Toxicological evaluation of trichothecenes in animal feed. Animal feed science and technology, 114(1-4), 205-239.
Wu, Q., Ku?a, K., Humpf, H. U., Klímová, B., & Cramer, B. (2017). Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: a review study. Mycotoxin Research, 33, 79-91.
Council for Agricultural Science. (2003). Mycotoxins: risks in plant, animal, and human systems (No. 139). Council for Agricultural.
Sampietro, D. A., Díaz, C. G., González, V., Vattuone, M. A., Ploper, L. D., Catalán, C. A. N., & Ward, T. J. (2011). Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. International Journal of Food Microbiology, 145(1), 359-364.
Logrieco, A., Bottalico, A., Mulé, G., Moretti, A., & Perrone, G. (2003). Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Epidemiology of Mycotoxin Producing Fungi: Under the aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003’, EU project (QLK 1-CT-1998–01380), 645-667.
Gelderblom, W. C., Jaskiewicz, K., Marasas, W. F., Thiel, P. G., Horak, R. M., Vleggaar, R., & Kriek, N. (1988). Fumonisins--novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and environmental microbiology, 54(7), 1806-1811.
Marasas, W. F. (1996). Fumonisins: history, world-wide occurrence and impact. Fumonisins in food, 1-17.
Richard, J. L. (2000). Mycotoxins-an overview. Romer Labs’ guide to mycotoxins, 1, 1-48.
Rodrigues, I., Handl, J., & Binder, E. M. (2011). Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa. Food Additives and Contaminants: Part B, 4(3), 168-179.
Zinedine, A., Soriano, J. M., Juan, C., Mojemmi, B., Molto, J. C., Bouklouze, A., ... & Manes, J. (2007). Incidence of ochratoxin A in rice and dried fruits from Rabat and Salé area, Morocco. Food Additives and Contaminants, 24(3), 285-291.
EFSA Panel on Contaminants in the Food Chain. (2011). Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA Journal, 9(6), 2197.
Richard, J. L. (2000). Mycotoxins-an overview. Romer Labs’ guide to mycotoxins, 1, 1-48.
Rai, A., Das, M., & Tripathi, A. (2020). Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Critical Reviews in Food Science and Nutrition, 60(16), 2710-2729.
Kuiper-Goodman, T., Scott, P., & Watanabe, H. (1987). Risk assessment of the mycotoxin zearalenone. Regulatory toxicology and pharmacology, 7(3), 253-306.
Biehl, M. L., Prelusky, D. B., Koritz, G. D., Hartin, K. E., Buck, W. B., & Trenholm, H. L. (1993). Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicology and applied pharmacology, 121(1), 152-159.
Dänicke, S., Swiech, E., Buraczewska, L., & Ueberschär, K. H. (2005). Kinetics and metabolism of zearalenone in young female pigs. Journal of animal physiology and animal nutrition, 89(7?8), 268-276.
Devreese, M., Antonissen, G., Broekaert, N., De Baere, S., Vanhaecke, L., De Backer, P., & Croubels, S. (2015). Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species. Journal of agricultural and food chemistry, 63(20), 5092-5098.
Liang, Z., Ren, Z., Gao, S., Chen, Y., Yang, Y., Yang, D., ... & Shen, L. (2015). Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environmental toxicology and pharmacology, 40(3), 686-691.
Fink-Gremmels, J., & Malekinejad, H. J. A. F. (2007). Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Animal Feed Science and Technology, 137(3-4), 326-341.
Dong, M., He, X. J., Tulayakul, P., Li, J. Y., Dong, K. S., Manabe, N., ... & Kumagai, S. (2010). The toxic effects and fate of intravenously administered zearalenone in goats. Toxicon, 55(2-3), 523-530.
Zinedine, A., Soriano, J. M., Moltó, J. C., & Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and chemical toxicology, 45(1), 1-18.
Minervini, F., Giannoccaro, A., Fornelli, F., Dell'Aquila, M. E., Minoia, P., & Visconti, A. (2006). Influence of mycotoxin zearalenone and its derivatives (alpha and beta zearalenol) on apoptosis and proliferation of cultured granulosa cells from equine ovaries. Reproductive Biology and Endocrinology, 4, 1-9.
Kwa?niewska, K., Gadza?a-Kopciuch, R., & Cendrowski, K. (2015). Analytical procedure for the determination of zearalenone in environmental and biological samples. Critical Reviews in Analytical Chemistry, 45(2), 119-130.
Fitzpatrick, D. W., Arbuckle, L. D., & Hassen, A. M. (1988). Zearalenone metabolism and excretion in the rat: effect of different doses. Journal of Environmental Science & Health Part B, 23(4), 343-354.
Biehl, M. L., Prelusky, D. B., Koritz, G. D., Hartin, K. E., Buck, W. B., & Trenholm, H. L. (1993). Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicology and applied pharmacology, 121(1), 152-159.
Shin, B. S., Hong, S. H., Bulitta, J. B., Lee, J. B., Hwang, S. W., Kim, H. J., ... & Yoo, S. D. (2009). Physiologically based pharmacokinetics of zearalenone. Journal of Toxicology and Environmental Health, Part A, 72(21-22), 1395-1405.
Gromadzka, K., Waskiewicz, A., Chelkowski, J., & Golinski, P. (2008). Zearalenone and its metabolites: occurrence, detection, toxicity and guidelines. World Mycotoxin Journal, 1(2), 209-220.
da Rocha, M. E. B., Freire, F. D. C. O., Maia, F. E. F., Guedes, M. I. F., & Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food control, 36(1), 159-165.
Prelusky, D. B., Scott, P. M., Trenholm, H. L., & Lawrence, G. A. (1990). Minimal transmission of zearalenone to milk of dairy cows. Journal of Environmental Science & Health Part B, 25(1), 87-103.
Coffey, R., Cummins, E., & Ward, S. (2009). Exposure assessment of mycotoxins in dairy milk. Food control, 20(3), 239-249.
Domijan, A., Peraica, M., Cvjetkovic, B. O. G. D. A. N., Turcin, S., Jurjevic, Z. E. L. J. K. O., & Ivic, D. A. R. I. O. (2005). Mould contamination and co-occurrence of mycotoxins in maize grain in Croatia. ACTA PHARMACEUTICA-ZAGREB-, 55(4), 349.
Scudamore, K. A., & Patel, S. (2009). Occurrence of Fusarium mycotoxins in maize imported into the UK, 2004–2007. Food Additives & Contaminants: Part A, 26(3), 363-371.
Manova, R., & Mladenova, R. (2009). Incidence of zearalenone and fumonisins in Bulgarian cereal production. Food control, 20(4), 362-365.
Zinedine, A., Brera, C., Elakhdari, S., Catano, C., Debegnach, F., Angelini, S., ... & Miraglia, M. (2006). Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food control, 17(11), 868-874.
Zinedine, A., Soriano, J. M., Moltó, J. C., & Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and chemical toxicology, 45(1), 1-18.
Buszewska-Forajta, M. (2020). Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon, 182, 34-53.
Gajecka, M., & Gajecki, M. (2014). Is mycotoxins can be used as inhibitors in milk. Innow. MLecz, 2, 22-29.
Rai, A., Das, M., & Tripathi, A. (2020). Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Critical Reviews in Food Science and Nutrition, 60(16), 2710-2729.
Marin, D. E., Pistol, G. C., Bulgaru, C. V., & Taranu, I. (2019). Cytotoxic and inflammatory effects of individual and combined exposure of HepG2 cells to zearalenone and its metabolites. Naunyn-Schmiedeberg's archives of pharmacology, 392(8), 937-947.
Hueza, I. M., Raspantini, P. C. F., Raspantini, L. E. R., Latorre, A. O., & Górniak, S. L. (2014). Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins, 6(3), 1080-1095.
Pietsch, C., Kersten, S., Valenta, H., Dänicke, S., Schulz, C., Burkhardt-Holm, P., & Junge, R. (2015). Effects of dietary exposure to zearalenone (ZEN) on carp (Cyprinus carpio L.). Toxins, 7(9), 3465-3480.
Maaroufi, K., Chekir, L., Creppy, E. E., Ellouz, F., & Bacha, H. (1996). Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon, 34(5), 535-540.
Jodlbauer, J., Zöllner, P., & Lindner, W. (2000). Determination of zearalenone and its metabolites in urine and tissue samples of cow and pig by LC-MS/MS. Mycotoxin Research, 16, 174-178.
Takagi, M., Uno, S., Kokushi, E., Shiga, S., Mukai, S., Kuriyagawa, T., ... & Fink-Gremmels, J. (2011). Measurement of urinary zearalenone concentrations for monitoring natural feed contamination in cattle herds: On-farm trials1. Journal of animal science, 89(1), 287-296.
Songsermsakul, P., Sontag, G., Cichna-Markl, M., Zentek, J., & Razzazi-Fazeli, E. (2006). Determination of zearalenone and its metabolites in urine, plasma and faeces of horses by HPLC–APCI–MS. Journal of Chromatography B, 843(2), 252-261.
Kovalsky Paris, M. P., Schweiger, W., Hametner, C., Stu?ckler, R., Muehlbauer, G. J., Varga, E., ... & Adam, G. (2014). Zearalenone-16-O-glucoside: a new masked mycotoxin. Journal of agricultural and food chemistry, 62(5), 1181-1189.
Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi chemical society, 15(2), 129-144.
Binder, S. B., Schwartz-Zimmermann, H. E., Varga, E., Bichl, G., Michlmayr, H., Adam, G., & Berthiller, F. (2017). Metabolism of zearalenone and its major modified forms in pigs. Toxins, 9(2), 56.
Zhang, G. L., Feng, Y. L., Song, J. L., & Zhou, X. S. (2018). Zearalenone: A mycotoxin with different toxic effect in domestic and laboratory animals’ granulosa cells. Frontiers in genetics, 9, 667.
Gli?ski, Z., Kostro, K., & Gaj?cki, M. (2011). Mikozy i mikotoksykozy zwierz?t. Wyd. UP w Lublinie.
El-Sharkaway, S. H., Selim, M. I., Afifi, M. S., & Halaweish, F. T. (1991). Microbial transformation of zearalenone to a zearalenone sulfate. Applied and Environmental Microbiology, 57(2), 549-552.
de Rodriguez, C. A. S., Bongiovanni, A. M., & de Borrego, L. C. (1985). An epidemic of precocious development in Puerto Rican children. The Journal of pediatrics, 107(3), 393-396.
Kwa?niewska, K., Gadza?a-Kopciuch, R., & Cendrowski, K. (2015). Analytical procedure for the determination of zearalenone in environmental and biological samples. Critical Reviews in Analytical Chemistry, 45(2), 119-130.
Miksicek, R. J. (1994). Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. The Journal of steroid biochemistry and molecular biology, 49(2-3), 153-160.
Kim, I. H., Son, H. Y., Cho, S. W., Ha, C. S., & Kang, B. H. (2003). Zearalenone induces male germ cell apoptosis in rats. Toxicology letters, 138(3), 185-192.
Wang, N., Wu, W., Pan, J., & Long, M. (2019). Detoxification strategies for zearalenone using microorganisms: A review. Microorganisms, 7(7), 208.
Swamy, H. V. L. N., Smith, T. K., MacDonald, E. J., Boermans, H. J., & Squires, E. J. (2002). Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. Journal of Animal Science, 80(12), 3257-3267.
Ghosh, T. K., Haldar, S., Bedford, M. R., Muthusami, N., & Samanta, I. (2012). Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: effects on performance, intestinal histo?morphology and humoral immune responses. Journal of Animal Physiology and Animal Nutrition, 96(2), 275-284.
Liu, N., Wang, J., Liu, Z., Wang, Y., & Wang, J. (2018). Effect of supplemental yeast cell walls on growth performance, gut mucosal glutathione pathway, proteolytic enzymes and transporters in growing broiler chickens. Journal of Animal Science, 96(4), 1330-1337.
Wan, M. L., Turner, P. C., Allen, K. J., & El-Nezami, H. (2016). Lactobacillus rhamnosus GG modulates intestinal mucosal barrier and inflammation in mice following combined dietary exposure to deoxynivalenol and zearalenone. Journal of Functional Foods, 22, 34-43.
Vega, M. F., Dieguez, S. N., Riccio, B., Aranguren, S., Giordano, A., Denzoin, L., ... & González, S. N. (2017). Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs. brazilian journal of microbiology, 48, 715-723.