The effect of adding two types of organic chromium to the diet of common carp Cyprinus carpio L. on some blood and biochemical traits.
DOI:
https://doi.org/10.56286/sebz2n66Abstract
This research was carried out in the fish laboratory of the Department of Animal Production/College of Agriculture and Forestry/University of Mosul. 147 common carp, Cyprinus carpio L., were used with an average initial weight of 27.60 ± 2 gm/fish, distributed over seven experimental treatments, with three replicates for each treatment. The fish were acclimatized before the experiment for twenty-one days to the aquarium environment and food intake. Two types of organic chromium were added, namely chromium picolinate, at an amount of 0.3, 0.4, and 0.5 mg/kg feed (T2, T3, and T4), and 0.3, 0.4, and 0.5 mg/kg feed of chromium nicotinate (T5, T6, and T7), besides the control diet without additives (T1), which was balanced in terms of crude protein and metabolic energy. Results of the statistical analysis showed that the fish fed the experimental diets T3 and T7 were significantly superior (P? 0.05) in terms of hemoglobin and PCV to the rest of the experimental diets, including the control diet. Fish fed the T6 diet recorded a significant superiority over the rest of the other experimental treatments in the total blood protein and globulin standards, while no significant differences were observed between the different experimental treatments with the exception of the control diet, which was significantly behind the rest of the treatments in the albumin standard. Fish fed the control diet outperformed the parameters of blood sugar, triglycerides, AST, and ALT significantly more than the rest of the experimental treatments. It turns out that adding both types of organic chromium (organic chromium picolinate and nicotinate) at a rate of 0.5 mg/kg feed gave the best results in most of the criteria studied.
References
? Asad, F., Ashraf, A., Rafique, A., Qamer, S., Naz, S., Ali, T., ... & Mazhar, A. (2021). Chromium supplemented carbohydrate diets for Cirrhinus mrigala: effects on body composition, gut enzyme activity and hematological parameters. Brazilian Journal of Biology, 83.? https://doi.org/10.1590/1519-6984.247284
Abadel-Daim, M. M., Dawood, M. A., Elbadawy, M., Aleya, L., & Alkahtani, S. (2020). Spirulina platensis reduced oxidative damage induced by chlorpyrifos toxicity in Nile tilapia (Oreochromis niloticus). Animals, 10(3), 473.? https://doi.org/10.3390/ani10030473
Akbary, P., & Makari, S. (2017). Effect of different levels of dietary chromium picolinate on productive performance, hematology and live Lipid levels in Indian Mackerel (Rastrelliger kanagurta). Veterinary Research & Biological Products, 30(3), 160-169.? https://doi.org/10.22092/vj.2017.109867
Al-ghanim, K.A., 2011. Impact of nickel (Ni) on hematological parameters and behavioral changes in Cyprinus carpio (common carp). African Journal of Biotechnology, vol. 10, no. 63, pp. 13860- 13866. https://doi.org/10.5897/AJB11.1893
Anderson, R. A. (1987). Chromium. Trace elements in human and animal nutrition. Academic Press. New York, 9, 225-244.? https://2u.pw/aF4lNip8
Arunkumar, R. I., Rajasekaran, P., & Michael, R. D. (2000). Differential effect of chromium compounds on the immune response of the African mouth breeder Oreochromis mossambicus (Peters). Fish & Shellfish Immunology, 10(8), 667-676. https://doi.org/10.1006/fsim.2000.0281
Asad, F., Naseem, N., Ashraf, A., Ali, T. and Behzad, A., 2017. Chemical composition and growth performance of Labeo rohita under the influence of Chromium chloride hexahydrate marker. International Journal of Biosciences, vol. 10, no. 1, pp. 186-194. http://dx.doi.org/10.12692/ijb/10.1.186-194. https://2u.pw/ZAOVhIuY
Ashouri, S., Keyvanshokooh, S., Salati, A. P., Johari, S. A., & Pasha-Zanoosi, H. (2015). Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture, 446, 25-29.? https://doi.org/10.1016/j.aquaculture.2015.04.021
Bitiren, M., Karak?lç?k, A. Z., Zerin, M., Aksoy, N., & Musa, D. (2004). Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Experimental and Toxicologic Pathology, 56(1-2), 59-64. https://doi.org/10.1016/j.etp.2004.05.001
Boyd, M. (2013). The role of supplemental chromium on glucose intolerance and insulin resistance. Topics in Clinical Nutrition, 28(2), 171-180.? https://2u.pw/9DLmxeyu
Chen, C. H., Jiang, T., Yang, J. H., Jiang, W., Lu, J., Marathe, G. K., ... & Yang, C. Y. (2003). Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation, 107(16), 2102-2108.? https://doi.org/10.1161/01.CIR.0000065220.70220.F7
Ebeid, T. A., Eid, Y. Z., & El-Habbak, M. M. (2005, April). Liver and Kidney function parameters in Avian species. In Review, proceeding of the 3rd International Poultry Conference, 4-7 April, Hughada, Egypt.? https://short-link.me/Jg7H
Giri, A. K., Sahu, N. P., Saharan, N., & Dash, G. (2014). Effect of dietary supplementation of chromium on growth and biochemical parameters of Labeo rohita (Hamilton) fingerlings. Indian Journal of Fisheries, 61(2), 73-81.? https://n9.cl/mwycl
Gomes, M. R., Rogero, M. M., & Tirapegui, J. (2005). Considerações sobre cromo, insulina e exercício físico. Revista brasileira de medicina do esporte, 11, 262-266.? https://doi.org/10.1590/S1517-86922005000500003
Hedayati, A. and Ghaffari, Z., (2013). Effect of mercuric chloride on some hematological, biochemical parameters in silver carp (Hypophthalmichthy smolitrix). International Journal of Veterinary Medicine Research & Reports, vol. 50, pp. 1-11. https://2u.pw/vFGZ4pTC
Hua, Y., Clark, S., Ren, J., & Sreejayan, N. (2012). Molecular mechanisms of chromium in alleviating insulin resistance. The Journal of nutritional biochemistry, 23(4), 313-319.?https://doi.org/10.1016/j.jnutbio.2011.11.001
Jain, S. K., Rains, J. L., & Croad, J. L. (2007). Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNFa, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radical Biology and Medicine, 43, 1124–1131. https://doi.org/10.1016/j.freeradbiomed.2007.05.019
Khan, K. U., Zuberi, A., Nazir, S., Fernandes, J. B. K., Jamil, Z., & Sarwar, H. (2016). Effects of dietary selenium nanoparticles on physiological andbiochemical aspects of juvenile Tor putitora. Turkish Journal of Zoology, 40(5), 704-712.? https://doi.org/10.3906/zoo-1510-5
Kucukbay, F. Z., Yazlak, H., Sahin, N., & Cakmak, M. N. (2006). Effects of dietary chromium picolinate supplementation on serum glucose, cholesterol and minerals of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 14, 259–266. https://2u.pw/Ki8K3Yip
Linder, M. C. (1991). Nutrition and metabolism of the trace elements. Nutritional biochemistry and metabolism with clinical applications, 215-276. https://2u.pw/RuS60ybI
Liu, T., Wen, H., Jiang, M., Yuan, D., Gao, P., Zhao, Y., & Liu, W. (2010). Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus. Fish physiology and biochemistry, 36, 565-572. https://n9.cl/nkuom
Magzoub, M. B., Al-Batshan, H. A., Hussein, M. F., Al-Mufarrej, S. I., & Al-Saiady, M. Y. (2010). The effect of source and level of dietary chromium supplementation on performance, chemical composition and some metabolic aspects in hybrid tilapia fish (Oreochromis niloticus× O. aureus). Research Journal of Biological Sciences, 5(2), 164-170.? https://n9.cl/gnhjs
Mehrim, A. I. (2014). Physiological, biochemical and histometric responses of Nile tilapia (Oreochromis niloticus L.) by dietary organic chromium (chromium picolinate) supplementation. Journal of advanced research, 5(3), 303-310.https://doi.org/10.1016/j.jare.2013.04.002
Mehrim, A. I. (2014). Physiological, biochemical and histometric responses of Nile tilapia (Oreochromis niloticus L.) by dietary organic chromium (chromium picolinate) supplementation. Journal of advanced research, 5(3), 303-310.https://doi.org/10.1016/j.jare.2013.04.002
Mertz, W. (1993). Chromium in human nutrition: a review. The Journal of nutrition, 123(4), 626-633.? https://2u.pw/skj9Ppuu
Molnár, T., Biró, J., Balogh, K., Mézes, M., & Hancz, C. (2012). Improving the nutritional value of Nile tilapia fillet by dietary selenium supplementation.? https://2u.pw/BWNK5zpn
Mooradian, A. D., Failla, M., Hoogwerf, B., Maryniuk, M., & Wylie-Rosett, J. (1994). Selected vitamins and minerals in diabetes. Diabetes care, 17(5), 464-479.? https://doi.org/10.2337/diacare.17.5.464
Pechova, A., & Pavlata, L. (2007). Chromium as an essential nutrient: a review. Veterinární medicína, 52(1), 1-18.? https://2u.pw/23iath3G
Pires, K. A., Santos, D. D., Graça, D. S., Melo, M. M., Barbosa, F. A., & Soto-Blanco, B. (2015). Effects of two sources of chromium on performance, blood and liver lipid levels in Nile Tilapia (Oreochromis niloticus).? https://n9.cl/wcdgo
Rosebrough, W. and Steele, N. C. 1981. Effect of supplemental dietary chromium or nicotic acid on carbohydrate metabolism during basal, starvation and refeeding periods in poultry. Poult. Sci., 60: 407-411. https://doi.org/10.3382/ps.0600407
Sa, R., Pousao-Ferreira, P., Oliva-Teles, A. 2006. Effect of dietary protein and lipid levels on growth and feed utilization of white seabream (Diplodus sargus) juveniles. Aquacult. Nutr., 12: 310-321. https://doi.org/10.1111/j.1365-2095.2006.00434.x
Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799-806.? https://2u.pw/wsgsLl9J
Selcuk, Z., Tiril, S. U., Alagil, F., Belen, V., Salman, M., Cenesiz, S., ... Yagci, F. B. (2010). Effects of dietary l-carnitine and chromium picolinate supplementations on performance and some serum parameters in rainbow trout (Oncorhynchus mykiss). Aquaculture International, 18, 213–221. https://short-link.me/H8IY
Shi, Q., Hu, P., Wen, Z., Wang, J., & Zou, Y. (2024). Ameliorative effects of Sargassum kjellmanianum on hexavalent chromium-induced growth inhibition, immune suppression, and oxidative stress in yellow catfish. Journal of Applied Phycology, 1-12.? https://short-link.me/Jg8b
Shiau, S. Y., & Liang, H. S. (1995). Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus× O. aureus, are affected by chromic oxide inclusion in the diet. The Journal of nutrition, 125(4), 976-982.? https://doi.org/10.1093/jn/125.4.976
Shiau, S. Y., & Shy, S. M. (1998). Dietary chromic oxide inclusion level required to maximize glucose utilization in hybrid tilapia, Oreochromis niloticus× O. aureus. Aquaculture, 161(1-4), 357-364.?https://doi.org/10.1016/S0044-8486(97)00283-4
Tawfik, S., Khalafalla, M., Zayed, M., Zeid, S., & Mohamed, R. (2024). Dietary N-acetylcysteine improved Nile tilapia (Oreochromis niloticus) performance and health status against heavy metals-induced oxidative stress. Egyptian Journal of Veterinary Sciences.? https://dx.doi.org/10.21608/ejvs.2024.277055.1917
Vutukuru, S. S., Arun Prabhath, N., Raghavender, M., & Yerramilli, A. (2007). Effect of arsenic and chromium on the serum amino-transferases activity in Indian major carp, Labeo rohita. International journal of environmental research and public health, 4(3), 224-227. https://doi.org/10.3390/ijerph2007030005
Zima, T., Mestek, O., Tesar, V., Tesarova, P., Nemecek, K., Zak, A., & Zeman, M. (1998). Chromium levels in patients with internal diseases. IUBMB Life, 46(2), 365-374.? https://2u.pw/4PlKcQMd