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With the beginning of the industrial revolution in the eighteenth century, 

ICE, refrigeration equipment, and power stations developed. All of the 

above devices use TBHE. The recent increase in energy demand is 

important, which led researchers to find optimal solutions to save the largest 

amount of energy. The objective of this review can be summarized in the 

research published in the field of TBHE of all kinds. In order to improve the 

performance of the TBHE, two basic conditions must be met, the first is to 

increase the CHTC, and the second is to reduce the PD across the HE. In 

order to reach this goal, many influential variables must be studied, 

including pipe diameters and shapes, vertical and horizontal distances, fin 

shape, and installation method, in addition to the arrangement of the tubes 

through the TBHE. It was in the form of IL or staggered, the type of flow 

that was stratified or turbulent. The most important variables affecting the 

performance of HEs can be summarized in general. The shape of the pipes 

had a greater urgency in the process, as the flat pipes had better performance 

than the circular TBHE. The PD and the CHTC are a function of the 

Reynolds number, as both increases with the increase in the Reynolds 

number. Therefore, studies in this field must be intensified to obtain the 

optimal design TBHE, considering all the above variables.
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1. Introduction 

With the beginning of the industrial revolution in 

the eighteenth century, the manufacture of IC 

engines, refrigeration devices, and power stations 

developed. Therefore, it became necessary to 

search in the field of HEs to release as much heat 

as possible to cool those devices. Given the wide 

use of HEs in industrial applications, a lot of 

research has been done to improve thermal 

efficiency. Increasing efficiency leads to cost 

reduction. The research includes selecting working 

fluids with high specific heat, the type of flow to 

ensure a high heat transfer coefficient, and the type 

of metal and shape [1-3]. The paper is organized 

according to the following, a general review of 

heat transfer and flow in TBHE Paragraph 1. The 

effect of speed, pipe diameters, shape, row 

arrangement, distance, fin shape and installation, 

and pipe shape were also discussed in Fluid flow 

parameters and designed TBHE. Optimal tube-to-

tube and fin-to-fin spacing with CHTC and 

minimum PD Paragraph 3,4. Paragraph 5 

highlights heat transfer and flow in the HE. The 

other figure is the flat tube shown in Section 6. 

Recently, researchers tended to apply the 

Constructal theory from Adrian Began in the field 

of TBHE; two types of studies can be classified in 

this field, single and multiple scales, as shown in 

Part 7. Section 8 illustrates the missing point of a 

new study and proposed future work. In the end, 

paragraph 9 most important conclusions. 

 

2. Background of TBHE 

Cross-flow over TBHE is frequently observed in heat 

transfer equipment such as power plant condensers 

and evaporators, refrigerators, and air conditioners. In 

such apparatus, one fluid goes through the tubes 

while the other moves perpendicularly across the 

tubes. Flow through the tubes may be studied by 

taking into account flow through a single tube and 

multiplying the findings by the number of tubes. See 

figs. 1 and 2 to see the flow through a collection of 

tubes and then determine the maximum fluid velocity 

[4]. This is not the case, however, for flow over the 

tubes, as the tubes influence the downstream flow 

pattern and turbulence level, and hence heat transfer 

to or from them. Within 30 Re 3000, a two-

dimensional numerical study of the transient flow in 

a round and square tube HE was conducted to 

determine PD and heat transfer parameters [5]. 

Comparing the model's theoretical conclusions to 

previously reported experimental data [6] 2D 

numerical investigation of steady-state laminar HE in 

HE of circular tubular banks with low Re number 

[7,8], numerical and experimental examination of 

flow in a bundle of oval cylinders [9,10]. Using an 

FDM, the momentum and Ee have been determined. 

The findings of the Nu number shown on the tube's 

surface were documented by [11, 12]. In the design 

of HEs, the significance of heat transfer and fluid 

flow through tube banks is well-known. Extensive 

experimental [13–17] and numerical investigations 

[6,18–21], both experimental and numerical [22–25], 

have previously been conducted on circular tube 

banks. The numerical study of laminar forced 

convection in a two-dimensional steady state in a 

circular cylinder bank with square and non-square–

line configurations. The investigation reveals that the 

first tube has the maximum heat transmission rate 

compared to the other. In addition, the PD increases 

dramatically when the transverse pitch to diameter 

ratio decreases [26]. Experiments were done to 

examine the heat transfer in the plate-fin HE at 

laminar flow within the range of 30 to 3000 Re. The 

study revealed that the average heat transfer 

coefficient rises by 15%-27% and the PD increases 

by 20%-25% compared to In direct order [27]. 

Perform an experiment to demonstrate the air/water 

cross-flow finned tube HE's performance 

characteristics. The HE has been tested in the range 

of Re numbers between 400 and 1500, depending on 

the hydraulic diameter as a characteristic. The mass 

transfer coefficients and convection were determined 

from the Colburn j factor and FF against Re number. 

Due to the presence of a film temperature, [28] it is 

also regarded to be a somewhat improved heat 

transmission medium. Based on previous studies 

published in the literature, one can conclude that tube 

shape and arrangement greatly influence heat transfer 

[29]. Experimentally, [30] investigated the influence 

of airflow rates and average particle sizes on thermal 

fluid characteristics in tube banks for both cascading 

and gradient configurations of gas-particle flow. 

Another impact of geometric characteristics such 

tube pitch, fin spacing, and tube diameter on COP 
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and the ratio of heat transfer rate to power dissipation 

PD (Q/ΔP). The optimal value of Q/ΔP was 

determined through numerical simulation [31]. [32] 

provides a stable mathematical model for hybrid 

arrangements of circular and elliptical tubes with 

fins. The temperature distribution and fin efficiency 

of the first and second rows of elliptical finned–tubes 

HEs were determined numerically using the CHTC 

collected experimentally via the sublimation of 

naphthalene technology and a portion of similarities 

with the transfer of heat and mass [33–36]. The finite 

volume method for computing conjugate heat transfer 

and flow characteristics in three dimensions in flat 

plate finned–tube HE is investigated. All of the flow 

patterns, pressure distribution, heat flux distribution, 

heat transfer coefficient distribution, and fin 

efficiency were depicted with a fixed shape in 

relation to the Re number. They discovered that the 

downstream fin is significantly less effective than the 

upstream fin. In addition, they asserted that the 

limited conductivity of the tube's wake caused the 

reversal of heat transmission [37]. The steady–state 

laminar incompressible flow over a tube bundle has 

been developed and used to solve the two– or three–

dimensional energy equation and NSE [38–41]. The 

use of numerical simulations or models to predict the 

fluid flow and heat transfer in tube banks has made 

tremendous efforts for development. They have been 

applied in many previous studies at anin–line 

configuration only [42–54], to an SG only [55–66], 

and both configurations [67–71]. Numerous 

researches have been conducted in the field of heat 

transfer and fluid flow in the analysis of two- and 

three-dimensional HEs with fins and without fins 

using FLUENT [72-86], ANSYS CFX [87-91], 

CFX4.4 [92], COMSOL Multiphysics [93]. A small 

number of scholars have presented numerical 

analyses of three-dimensional modeling for finned–

tube HEs. [94] examines a fully developed flow with 

periodic boundary conditions to model fluid flow and 

heat transfer using tubes placed in an in–line 

configuration. [95] conducted a computational and 

experimental analysis of the effect of fin spacing on 

the hydrodynamics and heat transfer for fluid flow 

through a three-dimensional finned tube with a single 

row configuration in the range 60 <Re <1460. Similar 

research is examined in [96]. This approach is 

acceptable for getting the quantitative coefficient of 

heat transfer for the plate fin [97] when the measured 

coefficient of heat transfer is Bi < 0.058. Different 

applications were suggested, like enhanced heat 

transfer in HE [98].  

 

 

Figure 1: Flow patterns for staggered and IL  TBHE. 

 

The fluid flow in TBHE carried out using PIV an SG  

with 4.8×10
3
 ≤ Re ≤ 14.4×10

3
[99], at Re = 9300 [86], 
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with 237 ≤ Re ≤ 55.9×10
3
[100], and at Re = 

2250[101], both in–line/SGs with 5.4×10
3
 ≤ Re ≤ 

29.7×10
3 

[102]. A comprehensive study was 

conducted to review research in the field of 

exchangers to show the effect of many variables on 

the performance of HEs, mainly the pressure 

difference and heat transfer [103 ]. 

 

 

 

Figure 2: Arrangement of the tubes in IL and 

staggered TBHE (A1, AT, and AD are flow areas, 

and L is the length). 

 

3. Fluid flow parameters and designed TBHE  

 

The design of TBHE, flow conditions, and the 

installation of longitudinal or transverse fins 

significantly impact the distribution of the CHTC, the 

pressure gradient through the HE, and the cost, 

weight, and required geometry. Combining all the 

variables above to reach the optimal design is not 

easy, so studies in this field are intensified. 

Researchers resort to separating heat transfer and 

fluid mechanics when necessary, so the separator is 

the Reynolds number. The general effect of the flow 

and geometric parameters on TBHE are presented in 

Table 1. These parameters' more detailed impacts 

will be shown as follows [3]. 

 

3.1 The effect of the superficial velocity 

 

The main shape of the adjacent layer depends on the 

velocity; it can be said that the adjacent layer is 

inversely proportional to the velocity. Therefore, we 

notice areas where the adjacent layer is close to the 

wall and does not exist in the middle, directly 

affecting the convection heat transfer coefficient. 

Therefore, it is necessary to address the selection of 

the Reynolds number at the characteristic dimension 

of the irregular or finned shapes. The researchers 

used the entrance velocity, the average velocity, and 

the velocity in the smallest area as the reference 

velocity. The reference velocity is usually defined as 

the last velocity according to the available literature 

[104,105]. The study has been done for fluid flow 

over the ILTBHE by using the finite element 

technique to estimate the effect of PD on heat 

transfer. They found that the separation angle from 

the front point of stagnation decreases with an 

increase in flow velocity [106]. The convective 

motion in both ILTBHE and STBHE is solved 

numerically by the FEM. The transverse and 

longitudinal pitches fixed at 2 with 40 ≤ Re ≤ 800
 
 

were studied. The result shows that CHTC is a 

function of Re [107].  The HE and PD in an ILTBHE 

were investigated experimentally for Re numbers 

between 5×10
4
 ≤ Re ≤ 6×10

6
, 0≤ k/d ≤ 0.009. The 

results show that the CHTC is a function of Re for all 

cases, and the maximum enhancement at k/d = 0.003 

[108]. 

 The Experimental and numerical study of heat 

transfer and fluid flow in STBHE uses the SIMPLER 

method to analyze the 3-D of the flow field. The free 
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stream velocity ranges are 2 m/s–7 m/s. Comparing 

the experimental data with numerical results showed 

a good agreement [109]. The temperature distribution 

in TBHE and the mean CHTC is around 14%–32% in 

SG compared with [110]. The total thermal resistance 

value on the waterside is less than 10% at the Re 

number varied between 1200≤ Re ≤  6000. The 

results indicate that the thermal resistance of air–the 

side equals almost waterside at 500≤ Re ≤ 1200 

[111]. Numerical studies evaluated frontal air 

velocity's effect in STBHE at 0.646 m/s to 4.64 m/s 

[112]. Also, the impact of the inlet air velocity on the 

Nu number and friction coefficient ranging between 

0.4 m/s to 4 m/s by [113]. A numerical and 

experimental study of FCHT in the air–side STBHE. 

AT 1082≤ Re ≤1649. The number of relative errors 

between the numerical and experimental results is 

around six percent. The deviation between these 

experimental results and previous work ranges from 

7% to 32.4% [114].  The characteristics of airside HT 

and PD in the experimental work have been done in 

[115]. 

 

3.2 The effect of tube diameter 

A numerical studies of heat transfer on the two-

pass automobile radiator with oval shape tubes have 

two diameters, the minor of 6.35–mm and major of 

11.82–mm, was investigated. The results showed 

wakes in the front/behind tube at the second row that 

lead to the minimization of the heat transfer rate to 

the lowest value [116,117]. The flow and thermal 

characteristics of circular and oval tubes were carried 

out experimentally [118]. The thermal–hydraulic oval 

tube performance is better than circular tubes [119-

121]. The influence of tube diameter on the Nu 

number and friction coefficient varies from 5–mm to 

15–mm at 1000≤ Re ≤ 6000. Both heat transfer and 

friction coefficients increase with the tube diameter 

[113]. 

The influences of minor–to–major axis ratios are 

0.25≤ Ar ≤ 1, and 5.6×10
3
 ≤ Re ≤ 4×10

4
  in the 

STBHE. The better thermal performance was eligible 

with smaller values of Re number and Ar [122]. 

Unsteady–RANS to simulate HT and PD in TBHE. 

The study shows that the rise of thermal hydraulic 

performance is higher than 80%, with a reduction in 

the tube ellipticity compared with circular tubes 

[123]. 

 

 

 

 

3.3 The effect of tube rows 

The arrangement of the rows in the HE attracted 

the attention of many researchers for several reasons, 

including the pressure gradient across the tube 

bundles, the variation of the CHTC from one tube to 

another, and the type of application. We may need a 

number of rows exceeding four rows, especially in 

the zigzag arrangement, to ensure that the fluid 

passes through the tubes similarly.  The impact of the 

number of rows on the CHTC for an in–line is higher 

than that of staggered at NR ≥ 2 [104,124,125]. Note 

that the CHTC has become fixed following the 3rd 

row. Rabas and Taborek, The correction factor of 

rows, decrease with an increase of rows number at 

the upper density of fins is 0.984 fins per meter while 

increased with a small fin density of 0.393 fins per 

meter [126]. The effect of tube rows on the CHTC for 

TBHE is also theoretical and experimentally studied 

[127]. The maximum efficiency at the two rows tube 

compared with single rows for 200≤ Re ≤ 700 [128]. 

The experimental investigation of fluid flow and heat 

transfer characteristics of TBHE is studied. The 

results were displayed in 300≤ Re ≤ 20000, the 

increases in ΔP with increased tube row numbers for 

the same frontal air velocity[129]. An experimental 

study to determine the effect of the tube row number 

on PD in TBHE. The tube rows various between 2 to 

4 for the air velocity changing from 0.9 m/s ≤ V ≤ 4 

m/s. The key result from this study is that the 

increase in the tube rows leads to a decrease in the 

Colburn and FFs [130].  The effect of tube rows and 

airflow rate on the j–factor for TBHE for both in–

line/SGs were tested experimentally [131]. The 

results show that the staggered fin and tube 

configurations enhance the performance of CHTC by 

seven and ten percent, respectively. The investigate 

of  CHTC from TBHE under an isothermal B.C. The 

control volume was selected from the fourth row of a 

tube as a typical cell to study the heat transfer from 

an in–line or SGs so analytical studies [132]. C-F 

over TBHE is commonly encountered in practice in 

heat transfer equipment. The   ̅̅ ̅̅   number increases 

by 30%,65% on the 2nd and 3rd tubes, compared 

with the first tube [133]. 
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3.4 The effect of tube pitch 

Early review of the CHTC and PD in the finned or 

non–fined TBHE with circular tube experimental 

literature [124,134].  Establishing the relationship 

between the CHTC and PD depends on air velocity 

and tube spacing [135]. For the STBHE, the CHTC is 

bigger for the nearer transverse pitch [135,136]. It 

would appear that the air velocity will become 

highest at decreasing the transverse pitch, and this 

impact will lead to bigger PD and CHTC [137-139]. 

A two-dimensional analysis was presented for 

inclined laminar–flow heat transfer in TBHE. The 

several cases with the inclined flow in the range of 0 

≤ θ ≤ 90
o
, 1.25 ≤ p/d ≤ 2.0, 5 ≤ Re ≤ 200, and 1≤ Pr ≤ 

528[140]. The FEM solves the Ee of heat transfer and 

fluid flow over inline/staggered TBHE [141-142]. 

[143] studied the effect of p/d ratios and Re number 

on average Nu number and PD for 4≤ Re ≤ 40. An 

FVM and displayed results for two pitch–to–diameter 

ratios are 1.5 and 2.0 based on 54 ≤ Re ≤ 120 at 

Pr=0.7 [144-146]. A numerical investigated of the 

HT and PD in TBHE. The pitch-to-tube diameter 

ratio various from 1.25 to 2.0, 100≤ Re ≤ 1000, and 

1≤ Pr ≤100 for CHF and CST. The forms of the 

results showed by FF, PD, and CHTC [147]. The 

following year extended the previous study for heat 

transfer and fully developed laminar flow over tube 

bundle HEs For the in–line configuration [148] and 

both in–line and SGs of the tube [149]. The PD in a 

round and elliptical TBHE with 200≤ Re ≤ 900. The 

results found a reduction in pressure loss of around 

tubes 30% [150].  

The laminar air flow convection heat transfer in the 

staggered circular TBHE was studied numerically 

[151]. The results, particularly at lower Re numbers, 

predict tube bank heat transfers. Employed a 

naphthalene sublimation technique to calculate 

CHTC of plain finned and TBHE. The decrease in 

the tube's pitch leads to more increase in the CHTC 

while increasing the PD [152]. The hydrodynamics 

characteristics for the in–line circular TBHE were 

carried out numerically [153]. The ratios of p/d are 

1.45, 1.50, 1.75, 1.85, and 2.00, with Re  ≤200. The 

results showed that the local Sh and   ̅̅ ̅ numbers. 

Their acquired correlation for   ̅̅ ̅ a number shows 

good agreement with previous experimental 

correlations. The influence of tube pitch on CHTC in 

the circular TBHE for both in–line/SGs was studied 

analytically [154]. The main results from this study 

are that the   ̅̅ ̅̅  TBHE depends on the transverse and 

longitudinal pitches and Re. The effect of 

longitudinal and transverse pitches on the CHTC and 

PD at the staggered TBHE was carried out in three 

dimensions [155]. The decrease in the transverse 

pitch causes the increased inlet velocity, enhancing 

CHTC. The numerical investigations of local CHTC 

for the TBHE issue for a wide range of TP, LP, and 

Re numbers [156–161]. For Pr number 

[39,51,107,109], and experimental [162]. The 

numerical 2–D FCHT of airflow over a staggered 

circular TBHE used the BFC and the FDM. Three 

transverse pitches of 1.25, 1.5, and 2.0 with 25 ≤ Re ≤ 

250 were examined. The results showed a higher Nu 

in the first tube [163]. Ramana et al. [164] An 

experimental test to influence tube–to–tube distance 

on the performance of the thermal fluid for both an 

in–line/staggered TBHE at 200≤ Re ≤ 1500. Re 

number enhancement, the CHTC is 100% at the 

staggered TBHE, whereas the PD in an in–line TBHE 

decreases around 18%. Experimental and numerical 

studied for the PD and forced heat transfer over four 

elliptic tubes in CF with SBTHE for 4000 ≤ Reb ≤ 

45570.  The transverse, PT/b, and longitudinal, PL/b 

spacing ratios both change between 1.5 to 4.0. the 

average CHTC has larger values for the four tubes 

staggered TBHE [165].  

In a recent study, the use wall–resolved LES 

with URANS to investigate the flow over periodic 

in–line TBHE have carried out. They studied the 

impact of tube spacing on fluid flow with the three 

values of the pitch–to–diameter ratio, P/D, 1.4, 1.6, 

and 2.0, being tested. The results showed that the 

decreases in P/D led to an increase in the flow 

deviation [166].  The effect of Re number on the PD 

and CHTC in a high–performance of an in–line and 

staggered TBHE. The laminar flow at 300 ≤ Re ≤ 800 

[22] is the effect of tube separation [167]. The results 

were provided in temperature contours, PB, and   ̅̅ ̅̅   

number. The HRSG investigated the uniform rate of 

CHTC with each row of the TBHE and conducted a 

complete numerical study by [168] at 200 ≤ Re ≤ 

2000. The result shows that the impact of transverse 

pitch can be included as a bigger Re number in the 

lower cross–section. The effect of the longitudinal 

spacing on characteristics of CHTC in the in–line 

TBHE for a single phase with CFD was studied by 

[169]. The result shows that the turbulence model on 

characteristics of CHTC is increased. 

 

3.5 The effect of fins pitch 

An analytical study was conducted for a TBHE 

to reduce the thermal resistance and pressure gradient 

using the Darcy flow model. The model used two 

types of fins: parallel and annular fins. When 

observing a TBHE, the optimal design was obtained 

using the variables pitch, fin height, and spacing 

[170]. Empirical results show that the allowable 

ranges of decreasing the space between fins depend 

on the velocity flow and flow turbulence in the 

channel between fins  [171]. The density (1/pF) 
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ranged from 114 to 811fins/m geometrical 

parameters were identical for high CHTC and law PD  

[172]. The friction drag force is the total of the drag 

on a bare tube (ΔpT) and the drag caused by the fins 

(ΔpF), as suggested by [172]. The drag force on the 

fins is the difference between the total drag force and 

the force related to the corresponding bare tube 

banks. Hence, the FF from the fins is:  

 

 
  F

cF
TF

Am

A
ppf

2

2




                   (1) 

 

The FF and j–factor (StPr
2/3

) are represented in Fig. 3 

as a function of the Reynolds number based on Dh for 

the eight-fin spacing tested. Fig. 4 represents the fin 

FF calculated by Eq. (1) plotted against the Reynolds 

number based on the longitudinal row pitch, PL, and 

the same j–factor [173]. To determine the effect of 

the number of tube rows on the j–element, similar HE 

geometry with 551 fins/m is used in a study 

performed later. The average j–factor for each 

exchanger as a function of RePL can be seen in Fig. 5 

[174]. Many studies have been carried out on plain 

TBHE, stating that friction does not depend on 

number of rows [175-183]. Ward and Young reached 

A similar conclusion: the increase of fin spacing from 

201.97 to 407.87 fins/m lead to decreases in PD[184]. 

Also, the pitch effect on CHTC and PD of TBHE 

with two rows experimentally [185]. A three-

dimensional, laminar flow, incompressible and steady 

state of PD and HT in oval tube TBHE was studied. 

The effect of the fin parameter on the thermofluids 

characteristics for the Re number range of 100 ≤ Re ≤ 

500. The results showed that the efficiency depends 

on the fin parameter [186,187]. 

Sheui et al. have A the 3–D numerical for air flow 

over circular tubes TBHE studied. The PD and 

CHTC characteristics have been investigated.  The 

results showed that adding fins leads to enhanced 

CHTC but causes an increase in PD [188].  The 

impact of geometry parameters on PD and CHTC for 

TBHE was carried out numerically [189]. According 

to this study, the main results are that the CHTC 

increases with increases ellipticity of the tubes. The 

CHTC on a TBHE with one fin–tube for several fin 

spacing was estimated numerically and 

experimentally [190]. The FDM and experimental 

data of temperature to predict the CHTC and fin 

efficiency are used. This study shows that the CHTC 

on the downstream fin is less than on the upstream 

fin. The effect of fin space and air velocity on mean 

CHTC for staggered TBHE was studied 

experimentally [191] as expected that the CHTC 

increased with the increase in fin spacing and flow 

rate.  

Huang et al. An SDM with CFX4.4, 3–D inverse 

problem in finding the CHTC for plain TBHE. The 

effects of fin pitch and air velocity were studied. The 

mean CHTC is greater than 8%–13% in the staggered 

arrangement compared with the in–line arrangement 

[192]. The effect of fin pitches on the CHTC for the 

TBHE in the range of 500 ≤ Re ≤ 800 studied 

experimentally. The experimental study of thermal 

and flow characteristics for elliptic TBHE with an 

eccentricity of tube 0.5 and the flow range of 200 ≤ 

Re ≤ 1500 was presented by [194]. The results in 

local and   ̅̅ ̅̅  number, friction, and Colburn j–factors 

are increased with increase Re. 

 

 

Figure 3: The HT and FF of a TBHE [98-173,99174]. 

 

 

 

Figure 4: The effect of HT on TBHE [99-174,100-

175] 
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Figure 5: The j factor and FF with RePL 

[98,173,99,174]. 

 

4. Optimum spacing 

Using available energy is the best solution to avoid 

the energy crisis in recent years. Using available 

energy (exergy) to improve industrial processes has 

been the most popular research topic. This is for 

using HEs in industrial applications because the 

optimal TBHE provides the maximum heat transfer 

for a given area. Such equipment should have high 

aria density [195,196]. The maximum overall thermal 

conductance is proportional to (ΔP)
0.5

. The cooling 

used forced convection, the previous studies 

containing results of optimum space between parallel 

plates [197–199], and natural convection [200]. An 

experimental investigation of the effect of fin pitch 

on the CHTC at the circular pin fins with 

inline/staggered TBHE is investigated. The results 

show that the optimum space between fins is 

streamwise and spanwise at the shroud clearance and 

arrangement type used [201]. Later, previous work 

was extended by [202] and confirmed the optimum 

spacing between the tubes. He explained that this 

optimal spacing decreases with the Pr number, and 

the PD increases with the bundle length. 

The experimental and numerical results for optimal 

spacing with the maximum thermal conductance are 

explained and correlated analytically by intersecting 

the small–spacing and large–spacing asymptotes of 

the thermal conductance function [203-205] and 

extending the previous work for the 3–D numerical 

and experimental. In the two Reynolds numbers 

based on swept length, ReL is 852 and 1065. The 

main results from this study are the gain of heat 

transfer (thermal conductance) and reduction in 

relative material mass, which are up to 19 percent 

and 32 percent, respectively [206]. Mainardes et al. A 

study has been Dan experimentally by forced 

convection for TBHE. The investigation was 

conducted for 2650 ≤ Re ≤ 10600 with the ratio of 

tube spacing to minor diameter changed from 0.1 to 

1.5. The result has shown the CHTC of up to 80% 

investigated when using an elliptical tube compared 

to a circular shape [207]. The study extended to 

parallel tubes in a solid matrix of fixed dimensions. 

The result was validated, and the case stated [208]. 

Investigations on the TBHE have been found in many 

different CFD codes, both in laminar and turbulent 

regimes. Design optimizations of HE were found in 

the size of tubes with the spacing and arrangements 

by different algorithms [209–214]. An experimental 

study has been Dan to reduce the power pumping in 

TBHE. [215]. The results presented at 2650 ≤ Re ≤ 

10600, tube pitch of 0.25 ≤ PT/2b ≤ 0.6, and 

eccentricities ranging from 0.4 to 1.0. The reduction 

in the pumping power is around 5%–10% at the 

elliptic TBHE compared with circular TBHE. 

 

5. Correlations of thermo fluids 

 

Several correlations, all based on experimental 

data for both average Nusselt number FF have been 

done. 

 

5.1 Nusselt number 

 

For CF over TBHE, the average Nusselt number 

is correlated by: [216,217]. 

The general form:  

    
  

 
     

            
      

   (2) 

Where: 

C,m, and n depend on the value of the Reynolds 

number. 

 

0.7< Pr < 500 

0< ReD < 2*10
6 

 

           
                 

      

   (3) 

For (IL)  0 ≤ ReD ≤100 

 

            
                 

             (4) 

 

For (IL) 100≤ ReD ≤1000) 

 

            
                  

       (5) 

 

For (IL) 1000 ≤ ReD ≤2*10
5 

 

             
                

      (6)  
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For (IL) 2*10
5 
≤ ReD ≤2*10

6 

 

            
                 

      (7) 

 

For (staggered) 0 ≤ ReD ≤ 500 

 

            
                 

     (8) 

 

For (staggered) 500 ≤ ReD ≤1000 

 

               
       

                 
      (9) 

 

For (staggered) 1000 ≤ ReD ≤ 2*10
5 

 

                
       

                 
      

(10) 

 

For (staggered) 2*10
5
 ≤ ReD ≤ 2*10

6
)  

 

      
         (11) 

 

 

Colburn suggested the correlation between flow and 

heat transfer over a staggered TBHE [218]. 

 

                 ⁄                                   (12) 

 

For N=10 , 10 < Re < 4×10
4
. 

 

The characteristics of heat transfer for both 

configurations in–line and staggered TBHE were 

carried out experimentally and based on a correlation 

of the empirical results [219]. 

 

                                                         (13) 

 

For air and N=10. 

 

 Another correlation has been developed for the 

number of rows less than ten [220]. its correction C2, 

defined as: 

                 

   
   

   
                                                        (14) 

 

Where    
and     the CHTC for NR< 10  

 

  |             |                             (15) 

 

For NR> 10 

 

The correlation constants of C, C2, and n, are 

contained in tables; in most textbooks for heat 

transfer (e.g., [221–223]) for in–line/staggered 

TBHE. 

A second way and to obtain the following expression 

[219]. 

                  

                                               (16) 

 

The slight modification for the above Eq. (4) offered 

the new correction for staggered TBHE [224]. 

 

                                               (17) 

 

With 

 

            
    

  
                                   (18) 

 

For in–line TBHE 

 

                                               (19) 

 

With 

 

     (   
    

  
     ) {

     

         
 

    } (
    

  
)
  ⁄

                (20) 

 

Additional use B.C at isothermal [132]. The 

analytical solution for heat transfer over TBHE the 

correlation as: 

 

                                                     (21) 

 

can be employed with 

 

in–line TBHE        [                  ]  
  

       
      

staggered TBHE       
       

       
     

[                 ]
 

 

A mean Nu number for the whole TBHE an empirical 

correlation of the form: 

 

                                                  (22) 

 

For  N>16 

 

C, m, n, and C1 in–line/staggered from textbooks 

[222,223]. 

 Ref. [225] displayed the measurement values of heat 

transfer in the empirical correlations. For both in–line 

and SGs, they are correlated by [219] the 

measurements for each of the tests of [226] and 

Pierson [227]. This empirical correlation was related 

to tube bundles for 10 or more tube rows in the deep 

flow.   

The experimental study of air flow over the in–line 

tube near a wall is presented by [228]. The range of 

Re number from 0.8×10
4
 ≤ Re ≤ 4×10

4
, the clearance, 
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c ratio 0.05 ≤ c ≤  4.0, and the longitudinal pitch, P2  

is 1.2 ≤ p2≤ 4.4. The correlation of the overall Nu 

number: 

 

230120
27401030

..
.

m
D

c

D

p
Re.Nu 




















(23) 

 

The deviation of correlation above about ±5% of in 

the ranges P2/D is  1.2≤ P2/D ≤ 3.2, c/D is 0.18≤ c/D 

≤ 0.16, and Re is 0.8×10
4
≤ Re ≤ 4×10

4 

 

 

5.2 Friction Factor 

 

Another correlation to predict the j and f factor versus 

Reynolds number for plain on staggered tube 

arrangement was studied in [217]. 

 

       
      

 

 
 (24) 

 

FF f and correction factor  for both IL and staggered 

TBHE as in fig.6 (a,b). 

 

 

(a) 

 

(b) 

Figure 6: shows  FF f and correction factor  for tube 

banks [ 217]. 

 

The heat transfer for four or more tube rows of 

staggered tube geometry is correlated by [229]. 
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                               (25) 

 

The assumption made in Eq. (14) is that the fourth 

row stabilizes the heat transfer coefficient, so in case 

of more than four tube rows and less than four, the j–

factor is governed by the correlation as shown: 

 

 

 R

RN

N.
.

R.
D

N
..

j

j




























46070
0310

0920

4 4
Re2429910

     

               (26) 

 

Eq. (16) gives the FF of the HE [229]. 
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And: 
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 (28) 

 

A higher FF is predicted by [230,231] for three or 

more tube rows; the correlation is: 
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NR ≥ 3                                                                 (29) 
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                                                                  (31) 

 

For the FF due to tubes, fT, which is shown by[232]: 
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                              (32) 

 

The FF of the HE is calculated by Eq. (16). 

Another correlation suggested  by [233] for the 

estimation of Sherwood number and friction loss is as 

follows:  
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The correlations parameters c and n are tabulated in 

Table 2. 

For  100 ≤ Re ≤ 500.  

The Nu number correlation is defined as [234]: 
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Elsewhere, the FF correlation is given by the 

equation   
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                         (35) 

 

For more correlations were summarized in Table 2 

[103]. 

6. Flat tubes and other shapes 

 

Flat tubes are a relatively modern technology used in 

various engineering applications, such as modern 

HEs and car radiators. The main objective of using 

HEs is to obtain the largest amount of heat exchange 

in return, taking into account the following variables: 

PD and the consequent provision of pumping power, 

volume, cost, vibration,  noise, and the type of metal 

used. Many researchers have devoted their work to 

studying fluid flow and heat transfer over cylindrical 

bodies. An experimental of HT and fluid flow over 

an FT are investigated for 124 ≤ Re ≤ 622. The 

uniform HF supplies are 354.9, 1016.3, and 1935.8 

W/m2, respectively. The experimental results 

indicate that the average Nu increases with Re and 

heat flux supply. The FF decreased with increases of 

Re [235]. Flat tubes have not been investigated as 

much as they provide space for heat transfer and 

improve the performance of TBHE  [236-244]. 

Compared to the circular tube TBHE, flat tube TBHE 

is expected to have lesser air–side PD and improved 

air–side CHTC. The same reason contributes to 

smaller vibration and noise in flat tube HEs than in 

circular tube HEs [245].  

 

6.1 In line and SGs 

The previous literature on the CHTC and PD over the 

flat TBHE is very little, excluding the contemporary 

studies of [246–248]. A numerical steady, laminar, 

incompressible, 2-D flow over a TBHE for both in–

line and staggered has been investigated [246]. 

Another study presented the results for the 2-D, 

incompressible and unsteady flow over in–

line/staggered TBHE is flux and isothermal B.C. 

From the standpoint of the HT, the in–line better than 

that staggered for most of the cases. While the PD is 

higher for in–line compared with the staggered 

TBHE [247]. A numerical studied of the HT and PD 

over a TBHE had been estimated. The results show 

that the CHTC and PD increase with an increase of 

Re always[249,250]. An experimental study for 

TBHE with both oval and circular shapes was carried 

out. The value CHTC is equal in both shapes. While 

the PD is lower than 10% in the oval shape 

[251,252]. Tahseen et al. have conducted an 

experimental investigation of the thermofluids 

characteristics of airflow in–line TBHE for laminar 

and incompressible. The results were presented in   ̅̅ ̅̅  

numbers, PD increases with increases Re [253]. 

Numerical studies for the PD and CHTC in the 

TBHE with staggered, circular, wing–shaped, and 

elliptic are studied [254-256]. The results of all 
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studies showed the difference between Cd and    ̅̅̅̅  the 

number of a few at an increase hydraulic diameter. 

Wang et al. [257] A numerical and experimental to 

get the performances of CHTC in TBHE has been 

studied. The deviation in the average CHTC obtained 

from two ways of the B.C are higher than 5% for fin 

efficiency less than 80. An experimental study has 

been made to investigate CHTC and PD around 

TBHE with 527≤ Re ≤ 880 and Pr=0.71 and various 

HF. The study results indicate that the 

The average Nusselt number of all flat tubes has 

increased by 23.7%-36.7% as Reynolds numbers 

vary from 527 ≤ Re ≤  880 at the fixed heat flux 

[258]. 

 

 

6.2 Rows of tubes between two plates  

 

The used of HEM to obtain the distribution of 

temperature and CHTC over TBHE was carried out 

numerically from [259]. For 50≤ Re ≤ 500 with three 

pitches, H/D of 1.5, 2.0, and 3.0, and tube pitches,  

L/D of 2.0, 3.0, and 6.0. The bulk temperature rises 

almost linearly from one HEM to another HEM for 

an equal rate of HT. In the same year, another studied 

PD and CHTC [260]. In the flowing year [261] 

conducted, an experimental study for the PD and 

CHTC for TBHE at 220 ≤ Re ≤ 2800. Compared 

numerical results with [262]. A similar numerical 

analysis for flat TBHE was carried out by [263] using 

the FVM to solve the equations of motions and the 

BFC at  25≤ Re ≤ 300, longitudinal pitches of 2, 3, 

and 4 at the Pr are taken 0.7. The PD and CHTC 

across–flow through TBHE were studied by [264]. 

The equations of motions were solved by using the 

FVM 100 ≤ Re ≤ 300 and 0.5 ≤ gap/diameter ≤ 1.25. 

The value   ̅̅ ̅̅  would have been indicated along 

cylinders. 

 

7. Constructal theory 

 

  The constructal theory is considered one of the most 

important applications in the field of engineering; the 

use of  design with constractal theory in the design of 

HEs in order to obtain the optimal area density, 

which is considered one of the most important design 

determinants of HEs because size has a major role, 

regardless of cost, weight or performance. Recently, 

researchers tended to apply the above theory. The 

research in this field can be divided into single and 

multiple scales and can be summarised in table 3 

[265]. 

 

8. Future work  

A longitudinal fin TBHE is one of the most critical 

essential components, commonly used recently in 

automobile radiators, refrigeration devices, 

condensers, and other uses. The size of the TBHE has 

an effective role in engineering applications. If a 

comparison is made between the flat and round 

TBHE, we find a large difference that may reach 

three times the size of the flat tube at the same 

operating conditions. In addition, flat TBHE has 

lower-side air PD and improved CHTC. For the 

above reasons, The optimal  Flat tube with front fin, 

flat tube with rear fin, flat tube with front and rear 

fin, the distance between two rows of longitudinally 

TBHE, the distance between two columns, and the 

effect of the angle of inclination of the rear fins with 

maximum total CHTC and minimum PD needs 

further focus and research in Future study. 

 

9. Conclusions 

 

A comprehensive review has been done in the field of 

finned and non-finned TBHE and a review of 

different designs of tubes (circular, longitudinal, or 

flat). The main determinant for choosing the optimal 

design is to improve the CHTC, but the PD depends 

on the design. Therefore, we must focus on an 

important matter: when the PD is essential, it is in a 

high range of Reynolds numbers. In order to agree 

between the variables affecting the Reynolds number, 

the effect of fluid velocity, pipe shape, the horizontal 

and vertical distance between pipes, spacing, and 

shape of fins was reviewed. 

Through the review of previous research, the main 

conclusions can be established as follows: 

• CHTC and PD are a function of the Reynolds 

number. 

• The effect of circular tube TBHE has been 

documented by a few studies, unlike the flat tube. 

• The SG shows a higher CHTC compared to the IL 

configuration. 

• The CHTC and PD increase with the number of 

fins. 

• The tube shape and arrangement clearly affect 

CHTC and PD. 

• Eventually, to obtain a HE with high efficiency, i.e., 

high CHTC and low PD, studies must focus on this 

field. 
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Table 1 Effect of the flow and geometric parameters on the thermofluids characteristics. 

NO Researcher Type Re number and 

velocity range 

Tube 

shape 

Geometric  

parameter 

Finding 

1 Tutar and 

Akkoca  [ 88 ] 

N 600 ≤ Re ≤ 2000 Cir 0.116 ≤ Pƒ ≤ 

0.365 

●The small effect of the number of 

tube rows on the heat transfer 

coefficient when the number of multi-

rows Ng > 4. 

●The PD increased with the number of 

rows from 1 to 4 for both IL and SGs. 

2 Paeng et al. 

[105 ] 

N +E 1082≤Re ≤1649 Cir. OD=10.2mm, 

Pƒ=3.5mm 

●The deviation between these 

experimental results and previous 

work is 7-32.4%. 

●The error range in the correlation of 

16.5-31.4% with compared previous 

correlation. 

3 Ibrahim and 

Gomaa [113] 

N+E 5.6x103≤Re≤4x104 Elp. 0.25≤A≤r1.0 ● The better thermal performance with 

a smaller Re number and Ar.  

● The HE employing elliptic tube 

arrangement contributes significantly 

to the energy conservation 

4 Simo Tala et 

al. [114] 

N Re=1050, and 

2100 

Cir. 

Elp. 

e =1.0(circular); 

e=0.7 and 

e=0.5 

● The increase of thermal-hydraulic 

performance of above 80% was 

obtained with a reduction in the tube 

ellipticity compared with a circular-

shaped tube.  

● The reduction of the thermal and 

viscous irreversibilitiesres respectively 

down to 15% and 50% was observed 

in the modified shapes when compared 

to circular ones 

5 Yan and Sheen 

 [ 115] 

E 300≤Re≤2000 Cir. PL=19.05mm; 

PT=25.4 mm; Pf 

=1.4,1.69,and2.0 

● The Δ ̃ increased with increases in 

the number of tube rows for the same 

frontal air velocity 

6 Halici et al. 

[116] 

E 0.9 m/s ≤ u ≤ 4 m/s Cir . Rowno. = 1–4 ● The increase in the number of tube 

rows leads to a decrease in the Colburn 

j and FFs 

7 Kim et al. 

[117] 

E 550 ≤ Re ≤ 1200 Cir PL = 27,30 ,and 

33 mm mm pf = 

7.5,10.0, 12.5 

,and 15.0 

● The staggered fin and tube 

configurations enhance heat transfer 

performance by 7% and 10%, 

respectively, compared to the IL fin 

configuration.  

● The heat transfer performance 

decrease with the increase of tube 

number 

8 Yoo  et al. 

[118] 

E 7.7* 103 ≤ Re ≤ 

30.3 * 103 

Cir PL = PT = 1.5, 

1.75, and 2.0 

● The Nu number increases by more 

than 30% and 65% on the second and 

third tubes, respectively, compared 

with the first. 

 ● The local heat transfer coefficients 

on each tube increase except on the 

front part of the first tube as the tube 

spacing decreases 

9 Beale and 

Spalding [ 

119] 

N 100 ≤ Re ≤ 1000 Cir 1.25 ≤ p/D ≤ 2.0 ● The results were shown in the form 

of the friction coefficient, PD, and 

coefficient of heat transfer 

10 Khan et al. 

[120]. 

A 1 x 103 ≤ Re ≤ 1 x 

105 

Cir PL = 20.5, and 

34.3 mm 

PT = 20.5, and 

31.3 mm 

● The  ̃u numbers depend on the 

transverse, longitudinal pitches, and 

Reynolds numbers.   

● For SG, the heat transfer coefficient 

is higher compared with the IL 

configuration 
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11 Xie et al. 

[121]. 

N 1 x 103 ≤ Re ≤ 6 = 

103 

Cir 32 mm ≤ PL ≤ 

36 mm, 

 19 mm ≤ PT ≤ 

23 mm 

● The decrease in the transverse pitch 

causes an increase in flow velocity, 

which in turn enhances the heat 

transfer.  

● The heat transfer and flow friction of 

the presented HEs are correlated in the 

multiple forms 

12 Ramana et al. 

[122] 

E 200 ≤ Re ≤ 1500 Cir PL = PT = 2.0 ● The high Reynolds number 

enhancement of the heat transfer is 

100% with the SG.  

● The PD in an IL arrangement 

decreased by about 18% compared to 

configurations without the porous 

medium. 

13 Berbish [123] N +E 4000 ≤Re ≤ 45570 Elp. 1.5 ≤ PL, PT/b ≤ 

4.0 

● For Re < 14100, the large local 

Nusselt number takes place at the 

leading edge (e.g.,  P/b = 0.0). 

 ● For Re > 414100, the maximum 

value of the average Nusselt number 

enhancement ratio is nearly about 2.0 

14 Lee et al. [124] N 500 ≤ Re ≤ 2000 Cir. 3.0 ≤ PT ≤ 7.0 ● The impact of the transverse pitch in 

the higher Reynolds numbers on the 

drafting of the traditional heat transfer. 

● Increasing the longitudinal space for 

the uniformly distributed cylinders will 

strengthen the total heat transfer. 

Otherwise,  the maximum  ̃u number 

is the without-uniformity temperature 

on the wall fin and tube wall. 

15 Chen et al. [ 

125] 

N 100 ≤ Re ≤ 500 Elp.  ● The heat transfer ratio of tube 

surface to fin was still < 10%.  

● The fin efficiency and fin 

temperature depend slightly on the fin 

parameters. 

16 Sheui et al. 

[126] 

N 0.3 ≤ u ≤ 2.0 Cir. 0.4  ≤ pf ≤ 5.0 ● The addition of fins leads to 

enhanced heat transfer but causes an 

increase in the PD. 

17 Erek et al. 

[127] 

N the mass flow rate 

used in all of the 

models is 1.904 x 

10 -5 kg/s 

Cir. PL = 35, and 38 ● The heat transfer increases with the 

increasing ellipticity of the tubes. 

However, the PD is significantly 

reduced by increasing tube ellipticity 

and decreasing the density of fins. 

 

Table 2 Details more correlations with condition and geometry parameters. 

N

O Researche

rs 
Correlations Conditions 

Geometr

y 

paramete

rs 

Metho

d 

Tub

e 

shap

e 

Deviatio

n (%) 

 

Taler [66]
  

    3161030
13860 a

.
aa PrRe.Nu 

 155 ≤ Rea ≤ 331 In–lin. S + E Elp. – 

1 
  38970

13860
.

aa Re.j


  

2 Paeng et 

al. [105]
 

    317840
0490 f

.
D PrRe.Nu   1082≤ ReD ≤ 1649 Stagg. N + E Cir. 0.4–6.0 

3 Taler 

[108]
  

    3160370
069630 a

.
aa PrRe.Nu  200 ≤ Rea ≤ 1500 In–lin. N Elp.  
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4 Rosman et 

al. [118]
  

  ̅̅ ̅̅  [                    ]       

 
200 ≤ Re ≤ 1700 In–lin. T+E Cir. 2.5 

 

Xie et al. 

[146]  

                  

 (
  

  
)
      

(  

  

  
)

      

 

1×103 < Re < 6×103 

16 mm ≤ Do ≤ 

20mm, 

2 mm ≤ pF ≤ 4 mm, 

38 mm ≤ PT ≤  46 

mm, 

32 mm ≤ PL ≤  36 

mm 

Stagg. N Cir. 

3.7 

5 
                   

  (
  

  
)
      

(  

  

  
)

      

 
6.5 

6 
Kayansay

an [171]  
              (

  

   
)
      

 

5×102 < Re < 

3×104, 

              ⁄  

Stagg. E Cir. 8.2 

7 

Chen and 

Ren [176]  
406801910 .. PrRe.Nu 

 

4.5×103 ≤ Re ≤ 

2.7×104, 

0.336 ≤ H/D ≤ 

0.516 

Stagg. E Cir. 5 

8 
Colburn 

[207]  
                 ⁄  

10 ≤ Re ≤ 4×104, 

NR  ≥ 10 
– – Gen. – 

9 
Taler 

[224]  
                      150  ≤ Re ≤ 350 

Auto. 

radiator 
E Elp. – 

10 Dittus and 

Boelter 

[225]  

                    

Re ≥ 1×104, 

0.7 ≤ Pr ≤ 100, 

L/D ≥ 60 

Auto. 

radiator 
E Gen. – 

11 

Merker 

and Hanke 

[226]  

                 

PL = 1.0, 

1.97 ≤ PT ≤ 3.16, 

Re < 6400 Stagg. E Elp. – 

 
                 Re > 6400 

 
Chen and 

Wung 

[227]  

                   
40 ≤ Re ≤ 800, 

0.1 ≤ Pr ≤ 10 

In–lin. 

A Cir. 

– 

12 
                     Stagg. – 

 

Wang et 

al. [228]  

           
NR > 1, 

Re < 500 
Stagg. E Cir. 5.9 

13 
            

NR > 1, 

500 < Re < 1000 

 

Kim and 

Kim [229]  
               

        
      

600 ≤ ReDh ≤ 2000,  

7.5 ≤ pF ≤ 15, 

1 ≤ NR ≤ 4 

In–lin. E Cir. 3.8 

14 Stagg.   6.2 

15 Khan et 

al. [230]  
                  ⁄  

1×104 ≤ Re ≤ 

3.6×104 
In–lin. E Elp. 14.5 
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16 Jacimovic 

et al. 

[231]  

  (
   

           )    
          300 < Re < 4000 Stagg. E Cir. 5.7 

 (Auto.: automotive;  A: analytic; Cir: circular tube;  E : empirical; Elp.: elliptic;  N: numerical; In–lin.: in–line; S: 

simulation;  Stagg.: staggered) 

 

Table (3):  Summary of Literature Survey with DCT. 

NO 

Authors Configuration Range  Conclusions 

1 

Matos [22] 

 

300  

Re  

800  

Elliptical 13%: Gain of 

heat transfer  Circular  

25% reduction in PD 

concerning previous 

studies. 

2 

Matos [202] 

 

852  

Re  

8520 

Elliptic arrange. 

Enhancement of 20% 

as compared with 

circular arrange. 

 

  

3 

Matos et al. 

[206] 

 

852  

Re  

1065 

An enhancement of 

19% was obtained with 

elliptic TBHE, which 

was accompanied by a 

reduction in circular 

TBHE of 32%  
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4 

T. Bello-

Ochende 

[266] 

 

105 Ra 

 107 

Be = 1, 

105 

A global correlation 

that covers the mixed 

convection phase of 

study for optimal 

spacing distance and 

maximum heat transfer 

and reports the 

important role of (Ra) 

and (Be) numbers 

within the outcome 

correlation. 

5 

Marc 

Joucaviel 

[267] 

 

Be = 

103, 104, 

and 105 

Counter-cylinder 

rotation was more 

efficient than the 

configuration of 

cylinders rotation in 

the same direction. 

6 

Santos 

[268] 

 

60 Re 

 160 

The increase of the 

Rayleigh number leads 

to a decrease in the 

optimum spacing 

distance, resulting in a 

maximum heat transfer 

density. 

7 

Page [269] 

  

101  Ra 

 104 

The increase of the 

Rayleigh number leads 

to a decrease in the 

optimum spacing 

distance, resulting in a 

maximum heat transfer 

density. 



Ahmed Hasan Ahmed et al.  /NTU Journal of Renewable Energy (2023) 4 (1): 57-96 

 
74 

 

NO 

Authors Configuration Range  Conclusions 

8 

R. L. S. 

Mainardeset 

al. [215] 

 

Re = 

(2650, 

5300, 

7950, 

and 

10600). 

Utilizing constructal 

design with elliptic 

configuration reduces 

pumping power by 

(10%) with optimum 

spacing distance, 

eccentricity, and 

dimensional fin 

density of (0.5, 0.5, 

and 0.006) 

respectively. 

9 

Gongnan 

Xie [270] 

 

Be = 0, 

0.5, 1 

Adopting entropy 

generation 

minimization and 

constructal law as a 

mutually coupled 

technique for the 

utilized pin fin 

exchanger increases 

thermal energy stored 

by (10.2%). 

10 

G. 

Lorenzini et 

al. [271] 

 

Ra = 

(103
, 104

, 

105
, 

106), (Re 

= (10, 

102, 3 

*102,  

5 * 102, 

7 * 102 

,103). 

Fin aspect ratio largely 

affects fin Nusselt 

number with a 

considerable change 

for different values of 

Rayleigh numbers. 

 

11 

Lingen 

Chen [272] 

 

102  Re 

 105 

The optimum fin 

diameter based on 

constructal design 

maximizes heat 

density with 

decreasing 

dimensional pressure 

difference for a given 

heat sink shape. The 

PD was found to 

increase with increases 

in fluid velocity. 
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12 

G.M. 

Barros et. 

Al [273] 

 

Ri = 

(0.1, 0.5, 

1, 5, 10), 

(Re = 

(100) 

Maximum Nusselt 

number observed with 

a transverse pitch to 

cylinder diameter of 

(5) and (2.5) for 

Richardson numbers of 

(0.1 and 10), 

respectively. 

13 

Ahmed 

Waheed et 

al. [274] 

 

Ra=103, 

104, and 

105 

The optimum spacing 

distance at a given 

Rayleigh number 

remains constant for 

all tube diameters. The 

results also showed 

that for the same 

Rayleigh number and 

space size 

14 

A.L. Razera 

[275] 

 

Re & Ra 

= (10, 

102, and 

103) and 

(103, 

104, 105, 

and 106)  

The optimum shape 

was found to have a 

thermal performance 

gain of (40%) in 

comparison with other 

proposed geometries.    

15 

Ahmed 

Waheed 

[276] 

 

Rayleigh 

number 

 (103  

Ra  

105) 

With the increasing 

Rayleigh number, the 

optimum distance 

decreases in 

accordance 
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16 

Ahmed 

Waheed 

[277] 

 

103  Be 

 105 

With the decreasing of 

optimum spacing, heat 

density increases to a 

maximum value as the 

Bejan number is raised 

for all tubes' vertical 

axes 

17 

Ahmed 

Waheed 

[278] 

 

103  Be 

 105 

The decreasing of tube 

flatness with a constant 

Bejan number leads to 

the lowering of the 

optimum heat density 

18 

A.L. Razera 

et. Al,[279] 

 

Be = 10, 

and 

 5 10 

Optimization with a 

constructal design 

enhanced heat density 

in the range of (50% to 

97%) as compared 

with cases that utilize 

fewer degrees of 

freedom 
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19 

A. Bejan 

[280] 

 

103  Be 

 
100*109 

The unused flow 

region can be filled 

with smaller blades to 

produce a more 

efficient system. 

20 

T. Bello-

Ochende 

[281] 

 

105  Be 

 108 

The performance-

enhanced as system 

complexity increases 

and as the number of 

rated Fins increases to 

three and the optimal 

length of Fins 

increases with the 

Bejan number 

increases. 

21 

T. Bello-

Ochende et. 

Al, [282] 

 

103  Be 

 106 

The flow structure gets 

less permeable as the 

number of Fins grows, 

and the flow rate falls. 

Also, the overall heat 

transfer rate density 

rises 
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22 

Alexandre 

K. da Silva 

[283] 

 

107  Ra 

 108 

Once the complexity 

regarding flow 

structure is optimized, 

then the rate of heat 

transfer density was 

found to be 

maximized.   

23 

T. Bello-

Ochende et. 

Al [284] 

 

103  Ra 

 105 

The spacing between 

large-scale cylinder 

increases by irting the 

small cylinders in the 

unheated region. When 

the flow grows faster, 

spacing becomes 

smaller, while the 

cylinders' diameters 

reveal a minor change.      

24 

T. Bello-

Ochende et. 

Al [285] 

 

105  Be 

 107 

Results were in fair 

agreement with 

foretelling analytical 

outcomes 
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25 

T. Bello-

Ochende et. 

Al [286] 

 

Re = 50 

The optimal 

configuration for a pin 

fin obtained between 

(0.05) and (0.2) for 

short Fins while a ratio 

of pin fins diameters 

varied in the range of 

(1) and (1.2), and a 

ratio of the large fin to 

small fin height range 

from (0.9) and (1.2). 

26 

Y. Kim 

[287] 

 

Gr =104  

Re = 

500 

For the three vertical 

tubes (better to include 

the spacing distance 

between tubes). For 

four tubes (The case of 

two vertical tubes of 

almost the same 

diameters is better in 

performance) 

27 

T. Bello-

Ochende et. 

Al [288] 

 

10  Be 

 104 

Enhancements were 

found influential in the 

case of rotating 

cylinders aligned on 

the same axis of 

rotation rather than in 

the case of cylinders 

aligned on the plane of 

the leading edge. 
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28 

H. 

Kobayashi 

[289] 

 

None 

Asymmetry in the 

morphing and 

evolution of the tree 

shape configuration 

leaded to better 

optimum design 

29 

H. 

Matsushima 

et. Al [290] 

 

None 

Optimal spacing and 

height are found for 

cases that maximize 

the heat transfer rate 

and connect optimum 

heat transfer with the 

spacing distance 

between fins in the 

constructal design. 

30 

Page et. Al 

[291] 

 

101  Ra 

 104 

The rotation of 

cylinders did not 

influence maximum 

heat transfer density 

compared to a 

stationary case at large 

values of Rayleigh 

numbers. Optimum 

spacing was found to 

be decreased with the 

increase of cylinders’ 

rotational speed. 

31 

Ahmed 

Waheed 

[292] 

 

104   

Be   

106 

0.1  

Ra/Be   

10 

Utilizing multi-scale 

arrangement enhanced 

heat transfer density 

twice that of the 

single-scale 

arrangement 
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32 

Ahmed 

Waheed et. 

Al [293] 

 

103  Be 

 105 

When the smaller 

tubes are irted 

between, the bigger 

tubes, the heat transfer 

rate is increased for 

different semi-minor 

axes of the larger 

tubes. 

33 

Haldar et. 

Al [294] 

 

Gr = 105 

Maximum heat 

transfer can be 

obtained with thin fins 

of (0.01 m), optimum 

fin number of (6), and 

optimum fin length of 

(0.2 m) 

34 

Ibrahim 

[295] 

 

Re = 

(4.75  

103) to 

(3.96  

104) 

irreversibility ratio, 

FF, and the coefficient 

of heat transfer 

affected by the 

position of the fin 

concerning the elliptic 

tube surface 

35 

HALDAR 

[296] 

 

102  Gr 

 106 

As the Grashof number 

increases, which is 

accompanied by an 

increase in both fins 

number and length, the 

heat transfer rate also 

increases 
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36 

J. M. WU 

et. Al [297] 

 

Ra = 

7120 

For fins numbers (4 to 

10), fin efficiency 

decreases with 

increasing fins 

number. Numerical 

results for eight fins 

configuration reveal 

that there should be no 

fins aligned in the 

vertical plane. 

37 

Chidanand 

K. 

Mangrulkar 

et al. [298] 

 

Re = 

5500 to 

14,500 

Adding a splitter Fin to 

a fluid flow raises the 

Nusselt number, heat 

transfer, and lowering 

PD within the tube 

bank compared to a 

bare cylinder. 

38 

Chidanand 

K. 

Mangrulkar 

et. Al [299] 

 

Re  

8000 

At fixed mass flow, 

greater enhancements 

are attained with 

increased diameter 

unfinned tubes but at a 

high penalty in PD and 

pumping power. 
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