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ABSTRACT

With the beginning of the industrial revolution in the eighteenth century,

15 Fabruary2023| ICE, refrigeration equipment, and power stations developed. All of the

above devices use TBHE. The recent increase in energy demand is
important, which led researchers to find optimal solutions to save the largest
amount of energy. The objective of this review can be summarized in the
research published in the field of TBHE of all kinds. In order to improve the
performance of the TBHE, two basic conditions must be met, the first is to
increase the CHTC, and the second is to reduce the PD across the HE. In
order to reach this goal, many influential variables must be studied,
including pipe diameters and shapes, vertical and horizontal distances, fin
shape, and installation method, in addition to the arrangement of the tubes
through the TBHE. It was in the form of IL or staggered, the type of flow
that was stratified or turbulent. The most important variables affecting the
performance of HEs can be summarized in general. The shape of the pipes
had a greater urgency in the process, as the flat pipes had better performance
than the circular TBHE. The PD and the CHTC are a function of the
Reynolds number, as both increases with the increase in the Reynolds
number. Therefore, studies in this field must be intensified to obtain the
optimal design TBHE, considering all the above variables.
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1. Introduction

With the beginning of the industrial revolution in
the eighteenth century, the manufacture of IC
engines, refrigeration devices, and power stations
developed. Therefore, it became necessary to
search in the field of HEs to release as much heat
as possible to cool those devices. Given the wide
use of HEs in industrial applications, a lot of
research has been done to improve thermal
efficiency. Increasing efficiency leads to cost
reduction. The research includes selecting working
fluids with high specific heat, the type of flow to
ensure a high heat transfer coefficient, and the type
of metal and shape [1-3]. The paper is organized
according to the following, a general review of
heat transfer and flow in TBHE Paragraph 1. The
effect of speed, pipe diameters, shape, row
arrangement, distance, fin shape and installation,
and pipe shape were also discussed in Fluid flow
parameters and designed TBHE. Optimal tube-to-
tube and fin-to-fin spacing with CHTC and
minimum PD Paragraph 3,4. Paragraph 5
highlights heat transfer and flow in the HE. The
other figure is the flat tube shown in Section 6.
Recently, researchers tended to apply the
Constructal theory from Adrian Began in the field
of TBHE; two types of studies can be classified in
this field, single and multiple scales, as shown in
Part 7. Section 8 illustrates the missing point of a
new study and proposed future work. In the end,
paragraph 9 most important conclusions.

2. Background of TBHE

Cross-flow over TBHE is frequently observed in heat
transfer equipment such as power plant condensers
and evaporators, refrigerators, and air conditioners. In
such apparatus, one fluid goes through the tubes
while the other moves perpendicularly across the
tubes. Flow through the tubes may be studied by
taking into account flow through a single tube and
multiplying the findings by the number of tubes. See
figs. 1 and 2 to see the flow through a collection of
tubes and then determine the maximum fluid velocity
[4]. This is not the case, however, for flow over the
tubes, as the tubes influence the downstream flow
pattern and turbulence level, and hence heat transfer
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to or from them. Within 30 Re 3000, a two-
dimensional numerical study of the transient flow in
a round and square tube HE was conducted to
determine PD and heat transfer parameters [5].
Comparing the model's theoretical conclusions to
previously reported experimental data [6] 2D
numerical investigation of steady-state laminar HE in
HE of circular tubular banks with low Re number
[7,8], numerical and experimental examination of
flow in a bundle of oval cylinders [9,10]. Using an
FDM, the momentum and Ee have been determined.
The findings of the Nu number shown on the tube's
surface were documented by [11, 12]. In the design
of HEs, the significance of heat transfer and fluid
flow through tube banks is well-known. Extensive
experimental [13-17] and numerical investigations
[6,18-21], both experimental and numerical [22-25],
have previously been conducted on circular tube
banks. The numerical study of laminar forced
convection in a two-dimensional steady state in a
circular cylinder bank with square and non-square—
line configurations. The investigation reveals that the
first tube has the maximum heat transmission rate
compared to the other. In addition, the PD increases
dramatically when the transverse pitch to diameter
ratio decreases [26]. Experiments were done to
examine the heat transfer in the plate-fin HE at
laminar flow within the range of 30 to 3000 Re. The
study revealed that the average heat transfer
coefficient rises by 15%-27% and the PD increases
by 20%-25% compared to In direct order [27].
Perform an experiment to demonstrate the air/water
cross-flow  finned tube HE's performance
characteristics. The HE has been tested in the range
of Re numbers between 400 and 1500, depending on
the hydraulic diameter as a characteristic. The mass
transfer coefficients and convection were determined
from the Colburn j factor and FF against Re number.
Due to the presence of a film temperature, [28] it is
also regarded to be a somewhat improved heat
transmission medium. Based on previous studies
published in the literature, one can conclude that tube
shape and arrangement greatly influence heat transfer
[29]. Experimentally, [30] investigated the influence
of airflow rates and average particle sizes on thermal
fluid characteristics in tube banks for both cascading
and gradient configurations of gas-particle flow.
Another impact of geometric characteristics such
tube pitch, fin spacing, and tube diameter on COP
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and the ratio of heat transfer rate to power dissipation
PD (Q/AP). The optimal value of Q/AP was
determined through numerical simulation [31]. [32]
provides a stable mathematical model for hybrid
arrangements of circular and elliptical tubes with
fins. The temperature distribution and fin efficiency
of the first and second rows of elliptical finned—tubes
HEs were determined numerically using the CHTC
collected experimentally via the sublimation of
naphthalene technology and a portion of similarities
with the transfer of heat and mass [33—36]. The finite
volume method for computing conjugate heat transfer
and flow characteristics in three dimensions in flat
plate finned—tube HE is investigated. All of the flow
patterns, pressure distribution, heat flux distribution,
heat transfer coefficient distribution, and fin
efficiency were depicted with a fixed shape in
relation to the Re number. They discovered that the
downstream fin is significantly less effective than the
upstream fin. In addition, they asserted that the
limited conductivity of the tube's wake caused the
reversal of heat transmission [37]. The steady-state
laminar incompressible flow over a tube bundle has
been developed and used to solve the two— or three—
dimensional energy equation and NSE [38-41]. The
use of numerical simulations or models to predict the
fluid flow and heat transfer in tube banks has made
tremendous efforts for development. They have been
applied in many previous studies at anin-line
configuration only [42-54], to an SG only [55-66],
and both configurations [67-71]. Numerous
researches have been conducted in the field of heat
transfer and fluid flow in the analysis of two- and
three-dimensional HEs with fins and without fins
using FLUENT [72-86], ANSYS CFX [87-91],
CFX4.4 [92], COMSOL Multiphysics [93]. A small
number of scholars have presented numerical
analyses of three-dimensional modeling for finned—
tube HEs. [94] examines a fully developed flow with
periodic boundary conditions to model fluid flow and
heat transfer using tubes placed in an in-line
configuration. [95] conducted a computational and
experimental analysis of the effect of fin spacing on
the hydrodynamics and heat transfer for fluid flow
through a three-dimensional finned tube with a single
row configuration in the range 60 <Re <1460. Similar
research is examined in [96]. This approach is
acceptable for getting the quantitative coefficient of
heat transfer for the plate fin [97] when the measured
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coefficient of heat transfer is Bi < 0.058. Different
applications were suggested, like enhanced heat
transfer in HE [98].

Flow
direction

Figure 1: Flow patterns for staggered and IL TBHE.

The fluid flow in TBHE carried out using PIV an SG
with 4.8x10° < Re < 14.4x10%99], at Re = 9300 [86],
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with 237 < Re < 55.9x10°[100], and at Re
2250[101], both in—line/SGs with 5.4x10° < Re <
29.7x10° [102]. A comprehensive study was
conducted to review research in the field of
exchangers to show the effect of many variables on
the performance of HEs, mainly the pressure

difference and heat transfer [103 ].
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Figure 2: Arrangement of the tubes in IL and
staggered TBHE (A1, AT, and AD are flow areas,
and L is the length).
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3. Fluid flow parameters and designed TBHE

The design of TBHE, flow conditions, and the
installation of longitudinal or transverse fins
significantly impact the distribution of the CHTC, the
pressure gradient through the HE, and the cost,
weight, and required geometry. Combining all the
variables above to reach the optimal design is not
easy, so studies in this field are intensified.
Researchers resort to separating heat transfer and
fluid mechanics when necessary, so the separator is
the Reynolds number. The general effect of the flow
and geometric parameters on TBHE are presented in
Table 1. These parameters' more detailed impacts
will be shown as follows [3].

3.1 The effect of the superficial velocity

The main shape of the adjacent layer depends on the
velocity; it can be said that the adjacent layer is
inversely proportional to the velocity. Therefore, we
notice areas where the adjacent layer is close to the
wall and does not exist in the middle, directly
affecting the convection heat transfer coefficient.
Therefore, it is necessary to address the selection of
the Reynolds number at the characteristic dimension
of the irregular or finned shapes. The researchers
used the entrance velocity, the average velocity, and
the velocity in the smallest area as the reference
velocity. The reference velocity is usually defined as
the last velocity according to the available literature
[104,105]. The study has been done for fluid flow
over the ILTBHE by using the finite element
technique to estimate the effect of PD on heat
transfer. They found that the separation angle from
the front point of stagnation decreases with an
increase in flow velocity [106]. The convective
motion in both ILTBHE and STBHE is solved
numerically by the FEM. The transverse and
longitudinal pitches fixed at 2 with 40 < Re < 800
were studied. The result shows that CHTC is a
function of Re [107]. The HE and PD in an ILTBHE
were investigated experimentally for Re numbers
between 5x10* < Re < 6x10° 0< k/d < 0.009. The
results show that the CHTC is a function of Re for all
cases, and the maximum enhancement at k/d = 0.003
[108].

The Experimental and numerical study of heat
transfer and fluid flow in STBHE uses the SIMPLER
method to analyze the 3-D of the flow field. The free
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stream velocity ranges are 2 m/s—7 m/s. Comparing
the experimental data with numerical results showed
a good agreement [109]. The temperature distribution
in TBHE and the mean CHTC is around 14%-32% in
SG compared with [110]. The total thermal resistance
value on the waterside is less than 10% at the Re
number varied between 1200< Re < 6000. The
results indicate that the thermal resistance of air-the
side equals almost waterside at 500< Re < 1200
[111]. Numerical studies evaluated frontal air
velocity's effect in STBHE at 0.646 m/s to 4.64 m/s
[112]. Also, the impact of the inlet air velocity on the
Nu number and friction coefficient ranging between
04 m/s to 4 m/s by [113]. A numerical and
experimental study of FCHT in the air-side STBHE.
AT 1082< Re <1649. The number of relative errors
between the numerical and experimental results is
around six percent. The deviation between these
experimental results and previous work ranges from
7% to 32.4% [114]. The characteristics of airside HT
and PD in the experimental work have been done in
[115].

3.2 The effect of tube diameter

A numerical studies of heat transfer on the two-
pass automobile radiator with oval shape tubes have
two diameters, the minor of 6.35-mm and major of
11.82-mm, was investigated. The results showed
wakes in the front/behind tube at the second row that
lead to the minimization of the heat transfer rate to
the lowest value [116,117]. The flow and thermal
characteristics of circular and oval tubes were carried
out experimentally [118]. The thermal-hydraulic oval
tube performance is better than circular tubes [119-
121]. The influence of tube diameter on the Nu
number and friction coefficient varies from 5-mm to
15-mm at 1000< Re < 6000. Both heat transfer and
friction coefficients increase with the tube diameter
[113].

The influences of minor—to—major axis ratios are
0.25< Ar < 1, and 5.6x10° < Re < 4x10* in the
STBHE. The better thermal performance was eligible
with smaller values of Re number and Ar [122].
Unsteady—RANS to simulate HT and PD in TBHE.
The study shows that the rise of thermal hydraulic
performance is higher than 80%, with a reduction in
the tube ellipticity compared with circular tubes
[123].
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3.3 The effect of tube rows

The arrangement of the rows in the HE attracted
the attention of many researchers for several reasons,
including the pressure gradient across the tube
bundles, the variation of the CHTC from one tube to
another, and the type of application. We may need a
number of rows exceeding four rows, especially in
the zigzag arrangement, to ensure that the fluid
passes through the tubes similarly. The impact of the
number of rows on the CHTC for an in—line is higher
than that of staggered at Ng > 2 [104,124,125]. Note
that the CHTC has become fixed following the 3rd
row. Rabas and Taborek, The correction factor of
rows, decrease with an increase of rows number at
the upper density of fins is 0.984 fins per meter while
increased with a small fin density of 0.393 fins per
meter [126]. The effect of tube rows on the CHTC for
TBHE is also theoretical and experimentally studied
[127]. The maximum efficiency at the two rows tube
compared with single rows for 200< Re < 700 [128].
The experimental investigation of fluid flow and heat
transfer characteristics of TBHE is studied. The
results were displayed in 300< Re < 20000, the
increases in AP with increased tube row numbers for
the same frontal air velocity[129]. An experimental
study to determine the effect of the tube row number
on PD in TBHE. The tube rows various between 2 to
4 for the air velocity changing from 0.9 m/s <V < 4
m/s. The key result from this study is that the
increase in the tube rows leads to a decrease in the
Colburn and FFs [130]. The effect of tube rows and
airflow rate on the j—factor for TBHE for both in—
line/SGs were tested experimentally [131]. The
results show that the staggered fin and tube
configurations enhance the performance of CHTC by
seven and ten percent, respectively. The investigate
of CHTC from TBHE under an isothermal B.C. The
control volume was selected from the fourth row of a
tube as a typical cell to study the heat transfer from
an in-line or SGs so analytical studies [132]. C-F
over TBHE is commonly encountered in practice in
heat transfer equipment. The Nu number increases
by 30%,65% on the 2nd and 3rd tubes, compared
with the first tube [133].
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3.4 The effect of tube pitch

Early review of the CHTC and PD in the finned or
non-fined TBHE with circular tube experimental
literature [124,134]. Establishing the relationship
between the CHTC and PD depends on air velocity
and tube spacing [135]. For the STBHE, the CHTC is
bigger for the nearer transverse pitch [135,136]. It
would appear that the air velocity will become
highest at decreasing the transverse pitch, and this
impact will lead to bigger PD and CHTC [137-139].
A two-dimensional analysis was presented for
inclined laminar—flow heat transfer in TBHE. The
several cases with the inclined flow in the range of 0
<6<90° 1.25<p/d<2.0,5<Re<200,and 1<Pr<
528[140]. The FEM solves the Ee of heat transfer and
fluid flow over inline/staggered TBHE [141-142].
[143] studied the effect of p/d ratios and Re number
on average Nu number and PD for 4< Re < 40. An
FVM and displayed results for two pitch-to—diameter
ratios are 1.5 and 2.0 based on 54 < Re < 120 at
Pr=0.7 [144-146]. A numerical investigated of the
HT and PD in TBHE. The pitch-to-tube diameter
ratio various from 1.25 to 2.0, 100< Re < 1000, and
1< Pr <100 for CHF and CST. The forms of the
results showed by FF, PD, and CHTC [147]. The
following year extended the previous study for heat
transfer and fully developed laminar flow over tube
bundle HEs For the in—line configuration [148] and
both in—line and SGs of the tube [149]. The PD in a
round and elliptical TBHE with 200< Re < 900. The
results found a reduction in pressure loss of around
tubes 30% [150].

The laminar air flow convection heat transfer in the
staggered circular TBHE was studied numerically
[151]. The results, particularly at lower Re numbers,
predict tube bank heat transfers. Employed a
naphthalene sublimation technique to calculate
CHTC of plain finned and TBHE. The decrease in
the tube's pitch leads to more increase in the CHTC
while increasing the PD [152]. The hydrodynamics
characteristics for the in—line circular TBHE were
carried out numerically [153]. The ratios of p/d are
1.45, 1.50, 1.75, 1.85, and 2.00, with Re <200. The
results showed that the local Sh and Sh numbers.
Their acquired correlation for Sh a number shows
good agreement with previous experimental
correlations. The influence of tube pitch on CHTC in
the circular TBHE for both in—line/SGs was studied
analytically [154]. The main results from this study
are that the Nu TBHE depends on the transverse and
longitudinal pitches and Re. The effect of
longitudinal and transverse pitches on the CHTC and
PD at the staggered TBHE was carried out in three
dimensions [155]. The decrease in the transverse
pitch causes the increased inlet velocity, enhancing
CHTC. The numerical investigations of local CHTC
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for the TBHE issue for a wide range of TP, LP, and
Re numbers [156-161]. For Pr  number
[39,51,107,109], and experimental [162]. The
numerical 2-D FCHT of airflow over a staggered
circular TBHE used the BFC and the FDM. Three
transverse pitches of 1.25, 1.5, and 2.0 with 25 <Re <
250 were examined. The results showed a higher Nu
in the first tube [163]. Ramana et al. [164] An
experimental test to influence tube—to—tube distance
on the performance of the thermal fluid for both an
in—line/staggered TBHE at 200< Re < 1500. Re
number enhancement, the CHTC is 100% at the
staggered TBHE, whereas the PD in an in—line TBHE
decreases around 18%. Experimental and numerical
studied for the PD and forced heat transfer over four
elliptic tubes in CF with SBTHE for 4000 < Rey, <
45570. The transverse, P/b, and longitudinal, P /b
spacing ratios both change between 1.5 to 4.0. the
average CHTC has larger values for the four tubes
staggered TBHE [165].

In a recent study, the use wall-resolved LES
with URANS to investigate the flow over periodic
in—line TBHE have carried out. They studied the
impact of tube spacing on fluid flow with the three
values of the pitch—-to—diameter ratio, P/D, 1.4, 1.6,
and 2.0, being tested. The results showed that the
decreases in P/D led to an increase in the flow
deviation [166]. The effect of Re number on the PD
and CHTC in a high—performance of an in-line and
staggered TBHE. The laminar flow at 300 < Re < 800
[22] js the effect of tube separation [167]. The results

were provided in temperature contours, PB, and Nu
number. The HRSG investigated the uniform rate of
CHTC with each row of the TBHE and conducted a
complete numerical study by [168] at 200 < Re <
2000. The result shows that the impact of transverse
pitch can be included as a bigger Re number in the
lower cross—section. The effect of the longitudinal
spacing on characteristics of CHTC in the in-line
TBHE for a single phase with CFD was studied by
[169]. The result shows that the turbulence model on
characteristics of CHTC is increased.

3.5 The effect of fins pitch

An analytical study was conducted for a TBHE
to reduce the thermal resistance and pressure gradient
using the Darcy flow model. The model used two
types of fins: parallel and annular fins. When
observing a TBHE, the optimal design was obtained
using the variables pitch, fin height, and spacing
[170]. Empirical results show that the allowable
ranges of decreasing the space between fins depend
on the velocity flow and flow turbulence in the
channel between fins [171]. The density (1/pg)
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ranged from 114 to 811fins/m geometrical
parameters were identical for high CHTC and law PD
[172]. The friction drag force is the total of the drag
on a bare tube (Apt) and the drag caused by the fins
(Apg), as suggested by [172]. The drag force on the
fins is the difference between the total drag force and
the force related to the corresponding bare tube
banks. Hence, the FF from the fins is:

2
fr. = (Ap—Apr )% &
F

The FF and j—factor (StPr?®) are represented in Fig. 3
as a function of the Reynolds number based on Dy, for
the eight-fin spacing tested. Fig. 4 represents the fin
FF calculated by Eq. (1) plotted against the Reynolds
number based on the longitudinal row pitch, P, and
the same j—factor [173]. To determine the effect of
the number of tube rows on the j—element, similar HE
geometry with 551 fins/m is used in a study
performed later. The average j-factor for each
exchanger as a function of Rep_ can be seen in Fig. 5
[174]. Many studies have been carried out on plain
TBHE, stating that friction does not depend on
number of rows [175-183]. Ward and Young reached
A similar conclusion: the increase of fin spacing from
201.97 to 407.87 fins/m lead to decreases in PD[184].
Also, the pitch effect on CHTC and PD of TBHE
with two rows experimentally [185]. A three-
dimensional, laminar flow, incompressible and steady
state of PD and HT in oval tube TBHE was studied.
The effect of the fin parameter on the thermofluids
characteristics for the Re number range of 100 < Re <
500. The results showed that the efficiency depends
on the fin parameter [186,187].

Sheui et al. have A the 3-D numerical for air flow
over circular tubes TBHE studied. The PD and
CHTC characteristics have been investigated. The
results showed that adding fins leads to enhanced
CHTC but causes an increase in PD [188]. The
impact of geometry parameters on PD and CHTC for
TBHE was carried out numerically [189]. According
to this study, the main results are that the CHTC
increases with increases ellipticity of the tubes. The
CHTC on a TBHE with one fin—tube for several fin
spacing  was  estimated  numerically  and
experimentally [190]. The FDM and experimental
data of temperature to predict the CHTC and fin
efficiency are used. This study shows that the CHTC
on the downstream fin is less than on the upstream
fin. The effect of fin space and air velocity on mean
CHTC for staggered TBHE was studied
experimentally [191] as expected that the CHTC
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increased with the increase in fin spacing and flow
rate.

Huang et al. An SDM with CFX4.4, 3-D inverse
problem in finding the CHTC for plain TBHE. The
effects of fin pitch and air velocity were studied. The
mean CHTC is greater than 8%-13% in the staggered
arrangement compared with the in—line arrangement
[192]. The effect of fin pitches on the CHTC for the
TBHE in the range of 500 < Re < 800 studied
experimentally. The experimental study of thermal
and flow characteristics for elliptic TBHE with an
eccentricity of tube 0.5 and the flow range of 200 <
Re < 1500 was presented by [194]. The results in
local and Nu number, friction, and Colburn j—factors
are increased with increase Re.
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Figure 3: The HT and FF of a TBHE [98-173,99174].
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[98,173,99,174].

4. Optimum spacing

Using available energy is the best solution to avoid
the energy crisis in recent years. Using available
energy (exergy) to improve industrial processes has
been the most popular research topic. This is for
using HEs in industrial applications because the
optimal TBHE provides the maximum heat transfer
for a given area. Such equipment should have high
aria density [195,196]. The maximum overall thermal
conductance is proportional to (AP)*°. The cooling
used forced convection, the previous studies
containing results of optimum space between parallel
plates [197-199], and natural convection [200]. An
experimental investigation of the effect of fin pitch
on the CHTC at the circular pin fins with
inline/staggered TBHE is investigated. The results
show that the optimum space between fins is
streamwise and spanwise at the shroud clearance and
arrangement type used [201]. Later, previous work
was extended by [202] and confirmed the optimum
spacing between the tubes. He explained that this
optimal spacing decreases with the Pr number, and
the PD increases with the bundle length.

The experimental and numerical results for optimal
spacing with the maximum thermal conductance are
explained and correlated analytically by intersecting
the small-spacing and large—spacing asymptotes of
the thermal conductance function [203-205] and
extending the previous work for the 3-D numerical
and experimental. In the two Reynolds numbers
based on swept length, Re_ is 852 and 1065. The
main results from this study are the gain of heat
transfer (thermal conductance) and reduction in
relative material mass, which are up to 19 percent

64

and 32 percent, respectively [206]. Mainardes et al. A
study has been Dan experimentally by forced
convection for TBHE. The investigation was
conducted for 2650 < Re < 10600 with the ratio of
tube spacing to minor diameter changed from 0.1 to
1.5. The result has shown the CHTC of up to 80%
investigated when using an elliptical tube compared
to a circular shape [207]. The study extended to
parallel tubes in a solid matrix of fixed dimensions.
The result was validated, and the case stated [208].
Investigations on the TBHE have been found in many
different CFD codes, both in laminar and turbulent
regimes. Design optimizations of HE were found in
the size of tubes with the spacing and arrangements
by different algorithms [209-214]. An experimental
study has been Dan to reduce the power pumping in
TBHE. [215]. The results presented at 2650 < Re <
10600, tube pitch of 0.25 < P¢/2b < 0.6, and
eccentricities ranging from 0.4 to 1.0. The reduction
in the pumping power is around 5%-10% at the
elliptic TBHE compared with circular TBHE.

5. Correlations of thermo fluids

Several correlations, all based on experimental
data for both average Nusselt nhumber FF have been
done.
51 Nusselt number

For CF over TBHE, the average Nusselt number

is correlated by: [216,217].
The general form:

Nup = % = CRel*Pr™(Pr/Pr,)%?5

@)
Where:
C,m, and n depend on the value of the Reynolds
number.

0.7< Pr <500
0< Rep < 2*10°

Nuy = 0.9 ReS*Pr%36(Pr/Pr,)02%5

3)
For (IL) 0 <Rep <100
Nup, = 0.52 Re3°Pr3¢(Pr/Pr,)%25 (4)
For (IL) 100< Rep <1000)
Nup = 0.27 Re53Pr03¢(Pr/Pr,)025 )

For (IL) 1000 < Rep <2*10°

Nup = 0.033 Red8Pro4(Pr/Pr,)"25 (6)
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For (IL) 2*10° < Rep <2*10°

Nup = 1.04 Re)*Pr°3¢(Pr/Pr,)°25 (7

For (staggered) 0 < Rep < 500

Nup = 0.71 ReS°Pro36(Pr/Pr,)%25 (8)

For (staggered) 500 < Rep <1000

Nup = 0.35(S7/5,)%2 Red¢Pr36(Pr/Pr,)%25 (9)
For (staggered) 1000 < Rep < 2*10°

Nup = 0.031(S7/S,)°%? Red®Pro36(Pr/Pr,)0%>
(10)

For (staggered) 2*10° < Rep < 2*10°)

NUD'NL =F NUD (11)

Colburn suggested the correlation between flow and
heat transfer over a staggered TBHE [218].

Nu = 0.33 x Re%épri/3 (12)

For N=10, 10 < Re < 4x10*

The characteristics of heat transfer for both
configurations in-line and staggered TBHE were
carried out experimentally and based on a correlation
of the empirical results [219].

Nu = C X Re™ (13)

For air and N=10.

Another correlation has been developed for the
number of rows less than ten [220]. its correction C,,
defined as:

INg (14)

hio

Cz =
Where hy.and hy, the CHTC for Ng< 10

Nul(yg<10) = C2 X Nul =10 (15)

For Ng> 10

The correlation constants of C, C, and n, are
contained in tables; in most textbooks for heat
transfer (e.g., [221-223]) for in-line/staggered
TBHE.
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A second way and to obtain the following expression
[219].
Nu = 0.32 x F, X Re%61pr031 (16)

The slight modification for the above Eq. (4) offered
the new correction for staggered TBHE [224].

Nu = 0.35 x F, X Re%57pr031 an
With
Fa=1+0.1><PL+°I;—3T4 (18)
For in-line TBHE
Nu = 0.34 x F, x Re%61pr031 (19)
With
Fo=1+(P + - 652) {(P;"_ng)z -

1/2
0.12} (%) / (20)
Additional use B.C at isothermal [132]. The

analytical solution for heat transfer over TBHE the
correlation as:

Nu = C, x Re'/2prt/3 (21)
can be employed with

in-line TBHE
PB'212P7Q'285

C, = [0.25 + exp(—0.55 x P,)] x

_ 0.61xpP053pQ091
staggered TBHE C, = [ Zxexp(L09XP L]

A mean Nu number for the whole TBHE an empirical
correlation of the form:

Nu = C X C; X Re™Pr™ (22)

For N>16

C, m, n, and C; in-line/staggered from textbooks
[222,223].

Ref. [225] displayed the measurement values of heat
transfer in the empirical correlations. For both in—line
and SGs, they are correlated by [219] the
measurements for each of the tests of [226] and
Pierson [227]. This empirical correlation was related
to tube bundles for 10 or more tube rows in the deep
flow.

The experimental study of air flow over the in—line
tube near a wall is presented by [228]. The range of
Re number from 0.8x10* < Re < 4x10*, the clearance,
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¢ ratio 0.05 < ¢ < 4.0, and the longitudinal pitch, P,
is 1.2 < p2< 4.4. The correlation of the overall Nu
number:

-0.12 c 0.23
Nup, = 0.103x Re‘”“(ﬁj (—j (23)
D D

The deviation of correlation above about 5% of in
the ranges P,/D is 1.2< P,/D < 3.2, ¢/D is 0.18< ¢/D
<0.16, and Re is 0.8x10°< Re < 4x10*

5.2 Friction Factor
Another correlation to predict the j and f factor versus

Reynolds number for plain on staggered tube
arrangement was studied in [217].

°2
AP = N, fy 2ohex (24)

FF f and correction factor for both IL and staggered
TBHE as in fig.6 (a,b).

R T AT
' =50 G007 ner H
il i i
i o TR
T e A I e L -
B ) 11 012 041 v i—]
b o
E l-.|| Py — 1P, I @
F Eeﬁ F T JI._'Lll(I.
T it = T tauy
LT
| @) le-line armangement
(@)
Fossis H «HH vt
ST 1 ] H Rm='.|r‘71_:'
Y TH ainian 14 3 =0t p— |
15 \‘ I | ]
== =, 5, =5; LLD e
t P L1
5 3 ~H Y 2X S NS P
g 0 MNP =1 ] = |
:_i ”= 24 0o 08 I;IIJPL l;
i e
£ a 35
i [ LI TS
1ot it gt L ket 204 ey 2 L
R‘U-M
ib) Staggered mmngement ’
(b)
Figure 6: shows FF fand correction factor for tube
banks [ 217].
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The heat transfer for four or more tube rows of
staggered tube geometry is correlated by [229].

0.031 —-0.502
ja=0.14x(Rep )‘0-502(S—Fj [ﬁ]
Do P

(25)

The assumption made in Eq. (14) is that the fourth
row stabilizes the heat transfer coefficient, so in case
of more than four tube rows and less than four, the j—
factor is governed by the correlation as shown:

i
R _ 0.991{2.24x(ReD)‘°-°92[NR

_0.03170-607x(4-NR)
Ja 4 j }

(26)

Eq. (16) gives the FF of the HE [229].

Ar ( AF) tg
f=fe Py o[- 1o F |
Fa TTF A oF @7)

And:

S 1.318
fe =0.508x (Rep )‘0-521(D—Fj 28)
0

A higher FF is predicted by [230,231] for three or

more tube rows; the correlation is:

0.0138 0.13 0.106
j3 =0.163x (Reg ) 0369 > Lai
do do P

Ng >3 (29)

- - - (3-Ng)
J.ﬁ =1.043x (ReD)_O'SGA[SiJ 0'123(i]1-17[&] 0.564
I3 D, Dg N

Ng =1, 2 (30)
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-0.134 1.23 -0.347
fp =1.455x (Rep ) 0656| SE. a4
DO DO PL

(31)

For the FF due to tubes, fr, which is shown by[232]:

fr =% O.25+%(ReD)_O'16 {Ef—l}
Py °
DO

(32)

The FF of the HE is calculated by Eq. (16).
by [233] for the

estimation of Sherwood number and friction loss is as

Another correlation suggested

follows:

Sh =cxRe" 5c0-333

(33)
f =cxRe"

The correlations parameters ¢ and n are tabulated in
Table 2.
For 100 < Re < 500.

The Nu number correlation is defined as [234]:

-0.165 P 0.0558
Nu =1.565x Re®3424| N, x PE. 2
Do P1

(34)

Elsewhere, the FF correlation is given by the

equation

f =20.713x Re_o'3489[N R

Do P1

For more correlations were summarized in Table 2
[103].

-0.1676 0.6265

67

6. Flat tubes and other shapes

Flat tubes are a relatively modern technology used in
various engineering applications, such as modern
HEs and car radiators. The main objective of using
HEs is to obtain the largest amount of heat exchange
in return, taking into account the following variables:
PD and the consequent provision of pumping power,
volume, cost, vibration, noise, and the type of metal
used. Many researchers have devoted their work to
studying fluid flow and heat transfer over cylindrical
bodies. An experimental of HT and fluid flow over
an FT are investigated for 124 < Re < 622. The
uniform HF supplies are 354.9, 1016.3, and 1935.8
W/m2, respectively. The experimental results
indicate that the average Nu increases with Re and
heat flux supply. The FF decreased with increases of
Re [235]. Flat tubes have not been investigated as
much as they provide space for heat transfer and
improve the performance of TBHE [236-244].
Compared to the circular tube TBHE, flat tube TBHE
is expected to have lesser air—side PD and improved
air-side CHTC. The same reason contributes to
smaller vibration and noise in flat tube HEs than in
circular tube HEs [245].

6.1 In line and SGs

The previous literature on the CHTC and PD over the
flat TBHE is very little, excluding the contemporary
studies of [246-248]. A numerical steady, laminar,
incompressible, 2-D flow over a TBHE for both in-
line and staggered has been investigated [246].
Another study presented the results for the 2-D,
incompressible and unsteady flow over in—
line/staggered TBHE is flux and isothermal B.C.
From the standpoint of the HT, the in-line better than
that staggered for most of the cases. While the PD is
higher for in-line compared with the staggered
TBHE [247]. A numerical studied of the HT and PD
over a TBHE had been estimated. The results show
that the CHTC and PD increase with an increase of
Re always[249,250]. An experimental study for
TBHE with both oval and circular shapes was carried
out. The value CHTC is equal in both shapes. While
the PD is lower than 10% in the oval shape
[251,252]. Tahseen et al. have conducted an
experimental investigation of the thermofluids
characteristics of airflow in—line TBHE for laminar
and incompressible. The results were presented in Nu
numbers, PD increases with increases Re [253].
Numerical studies for the PD and CHTC in the
TBHE with staggered, circular, wing—shaped, and
elliptic are studied [254-256]. The results of all
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studies showed the difference between Cd and St the
number of a few at an increase hydraulic diameter.
Wang et al. [257] A numerical and experimental to
get the performances of CHTC in TBHE has been
studied. The deviation in the average CHTC obtained
from two ways of the B.C are higher than 5% for fin
efficiency less than 80. An experimental study has
been made to investigate CHTC and PD around
TBHE with 527< Re < 880 and Pr=0.71 and various
HF. The study results indicate that the
The average Nusselt number of all flat tubes has
increased by 23.7%-36.7% as Reynolds numbers
vary from 527 < Re < 880 at the fixed heat flux
[258].

6.2 Rows of tubes between two plates

The used of HEM to obtain the distribution of
temperature and CHTC over TBHE was carried out
numerically from [259]. For 50< Re < 500 with three
pitches, H/D of 1.5, 2.0, and 3.0, and tube pitches,
L/D of 2.0, 3.0, and 6.0. The bulk temperature rises
almost linearly from one HEM to another HEM for
an equal rate of HT. In the same year, another studied
PD and CHTC [260]. In the flowing year [261]
conducted, an experimental study for the PD and
CHTC for TBHE at 220 < Re < 2800. Compared
numerical results with [262]. A similar numerical
analysis for flat TBHE was carried out by [263] using
the FVM to solve the equations of motions and the
BFC at 25< Re < 300, longitudinal pitches of 2, 3,
and 4 at the Pr are taken 0.7. The PD and CHTC
across—flow through TBHE were studied by [264].
The equations of motions were solved by using the
FVM 100 < Re <300 and 0.5 < gap/diameter < 1.25.
The value Nu would have been indicated along
cylinders.

7. Constructal theory

The constructal theory is considered one of the most
important applications in the field of engineering; the
use of design with constractal theory in the design of
HEs in order to obtain the optimal area density,
which is considered one of the most important design
determinants of HEs because size has a major role,
regardless of cost, weight or performance. Recently,
researchers tended to apply the above theory. The
research in this field can be divided into single and
multiple scales and can be summarised in table 3
[265].

8. Future work
A longitudinal fin TBHE is one of the most critical
essential components, commonly used recently in
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automobile  radiators,  refrigeration  devices,
condensers, and other uses. The size of the TBHE has
an effective role in engineering applications. If a
comparison is made between the flat and round
TBHE, we find a large difference that may reach
three times the size of the flat tube at the same
operating conditions. In addition, flat TBHE has
lower-side air PD and improved CHTC. For the
above reasons, The optimal Flat tube with front fin,
flat tube with rear fin, flat tube with front and rear
fin, the distance between two rows of longitudinally
TBHE, the distance between two columns, and the
effect of the angle of inclination of the rear fins with
maximum total CHTC and minimum PD needs
further focus and research in Future study.

9. Conclusions

A comprehensive review has been done in the field of
finned and non-finned TBHE and a review of
different designs of tubes (circular, longitudinal, or
flat). The main determinant for choosing the optimal
design is to improve the CHTC, but the PD depends
on the design. Therefore, we must focus on an
important matter: when the PD is essential, it is in a
high range of Reynolds numbers. In order to agree
between the variables affecting the Reynolds number,
the effect of fluid velocity, pipe shape, the horizontal
and vertical distance between pipes, spacing, and
shape of fins was reviewed.

Through the review of previous research, the main
conclusions can be established as follows:

*+ CHTC and PD are a function of the Reynolds
number.

e The effect of circular tube TBHE has been
documented by a few studies, unlike the flat tube.

» The SG shows a higher CHTC compared to the IL
configuration.

e The CHTC and PD increase with the number of
fins.

» The tube shape and arrangement clearly affect
CHTC and PD.

« Eventually, to obtain a HE with high efficiency, i.e.,
high CHTC and low PD, studies must focus on this
field.
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Table 1 Effect of the flow and geometric parameters on the thermofluids characteristics.

NO

Researcher

Type

Re number and
velocity range

Tube
shape

Geometric
parameter

Finding

1

Tutar and
Akkoca [ 88]

N

600 <Re <2000

Cir

0.116<Pf <
0.365

o The small effect of the number of
tube rows on the heat transfer
coefficient when the number of multi-
rows Ny > 4.

e The PD increased with the number of
rows from 1 to 4 for both IL and SGs.

Paeng et al.
[105]

N +E

1082<Re <1649

Cir.

0OD=10.2mm,
Pf=3.5mm

eThe deviation between these
experimental results and previous
work is 7-32.4%.

eThe error range in the correlation of
16.5-31.4% with compared previous
correlation.

Ibrahim and
Gomaa [113]

N+E

5.6x10°<Re<4x10*

Elp.

0.25<A<rl.0

® The better thermal performance with
a smaller Re number and Ar.

e The HE employing elliptic tube
arrangement contributes significantly
to the energy conservation

Simo Tala et
al. [114]

Re=1050, and
2100

Cir.
Elp.

e =1.0(circular);
e=0.7 and
e=0.5

® The increase of thermal-hydraulic
performance of above 80% was
obtained with a reduction in the tube
ellipticity compared with a circular-
shaped tube.

e The reduction of the thermal and
viscous irreversibilitiesres respectively
down to 15% and 50% was observed
in the modified shapes when compared
to circular ones

Yan and Sheen
[ 115]

300<Re<2000

Cir.

P,=19.05mm;
P+=25.4 mm; P;
=1.4,1.69,and2.0

e The AP increased with increases in
the number of tube rows for the same
frontal air velocity

Halici et al.
[116]

09m/s<u<4m/s

Cir.

Rowno. =1-4

e The increase in the number of tube
rows leads to a decrease in the Colburn
j and FFs

Kim et al.
[117]

550 <Re <1200

Cir

P, =27,30 ,and
33 mm mm p¢ =
7.5,10.0, 12.5
,and 15.0

e The staggered fin and tube
configurations enhance heat transfer
performance by 7% and 10%,
respectively, compared to the IL fin
configuration.

e The heat transfer performance
decrease with the increase of tube
number

Yoo etal.
[118]

7.7%103<Re<
30.3*10°

Cir

P =Py =15,
1.75,and 2.0

e The Nu number increases by more
than 30% and 65% on the second and
third tubes, respectively, compared
with the first.

e The local heat transfer coefficients
on each tube increase except on the
front part of the first tube as the tube
spacing decreases

Beale and
Spalding [
119]

100 <Re < 1000

Cir

125<p/D<2.0

® The results were shown in the form
of the friction coefficient, PD, and
coefficient of heat transfer

10

Khan et al.
[120].

1x10°<Re<1x
10°

Cir

PL =205, and
34.3 mm
PT =205, and
31.3mm

e The Nu numbers depend on the
transverse, longitudinal pitches, and
Reynolds numbers.

e For SG, the heat transfer coefficient
is higher compared with the IL
configuration
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11

Xie et al.
[121].

N

1x10°<Re<6=
10°

Cir

32mm< P <
36 mm,
19 mm<P;<
23 mm

® The decrease in the transverse pitch
causes an increase in flow velocity,
which in turn enhances the heat
transfer.

e The heat transfer and flow friction of
the presented HEs are correlated in the
multiple forms

12

Ramana et al. E

[122]

200 <Re <1500

Cir

PL: PT:2'0

® The high Reynolds number
enhancement of the heat transfer is
100% with the SG.

e The PD in an IL arrangement
decreased by about 18% compared to
configurations without the porous
medium.

13

Berbish [123]

N +E

4000 <Re <45570

Elp.

1.5<P_, Pib<
4.0

e For Re < 14100, the large local
Nusselt number takes place at the
leading edge (e.g., P/b =0.0).

e For Re > 414100, the maximum
value of the average Nusselt number
enhancement ratio is nearly about 2.0

14

Leeetal [124] | N

500 <Re <2000

Cir.

3.0<PT<70

e The impact of the transverse pitch in
the higher Reynolds numbers on the
drafting of the traditional heat transfer.
e Increasing the longitudinal space for
the uniformly distributed cylinders will
strengthen the total heat transfer.
Otherwise, the maximum Nu number
is the without-uniformity temperature
on the wall fin and tube wall.

15

Chenetal. [
125]

100 <Re <500

Elp.

e The heat transfer ratio of tube
surface to fin was still < 10%.

® The fin efficiency and fin
temperature depend slightly on the fin
parameters.

16

Sheui et al.
[126]

03<u<20

Cir.

0.4 <p<5.0

e The addition of fins leads to
enhanced heat transfer but causes an
increase in the PD.

17

Erek et al.
[127]

the mass flow rate
used in all of the
models is 1.904 x
10 ®° kgls

Cir.

P, =35, and 38

® The heat transfer increases with the
increasing ellipticity of the tubes.
However, the PD is significantly
reduced by increasing tube ellipticity
and decreasing the density of fins.

Table 2 Details more correlations with condition and geometry parameters.

N Geometr Tub
O | Researche Correlations Conditions y Metho | e Deviatio
rs paramete | d shap n (%)
rs e
Nu, = 0.1386 x (Re, )*61%3(pr, J¥3
Taler [66] 155 <Re, <331 In—lin. S+E | Elp. -
1 . i
j, =0.1386x (Re, ) -3897
2 | Paeng et _ 0.784 )1./3 ;
al. [105] Nu =0.049x (ReD) (Prf 1082< Rep < 1649 Stagg. | N+E | Cir. | 04-6.0
3 Taler .
[108] Nu, = 0.06963 x (Rea )0-6037(pra ’1/2@0 <Re, <1500 In—lin. N Elp.
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4 zoirlnf;] ' | Nu = [3.58 + 8.46 x 10~*Re124] x Pro4 | 200 <Re < 1700 Inlin. | T+E | cir. | 25
Nu = 1.565 x Re03414 1x10° < Re < 6x10°
P 00558 —0.165 16 mm < D, < 3.7
T Pr
X (P_) <NR D_) 20mm,
. L 0]
< <
. Xie et al. 2 mm < pg <4 mm, Stagg. N Cir.
[146] F = 20.713 x Re 03489 38 mm<Pr< 46
—0.168 mm,
Py 0.6265 Pr 6.5
X (—) (NR —) 32mm<P < 36
PL Do
mm
6 |« 4 \-0362 5x10° < Re <
ana{f;i?y j =0.15 x Re™028 <—0 3x10", Stagg. E Cir. 8.2
to 112 < A,/A, < 23.
7 45x10° <Re <
Chen and 068 0.4 2.7x10% )
Ren [176] Nu = 0191)( Re Pr 0.336 <H/D < Stagg. E Cir. >
0.516
8 10 <Re <4x10*
Colburn _ 06p.1/3 <Re <4x10%
[207] Nu = 0.33 x Re’°Pr Ng > 10 - - Gen. -
9 Taler Auto
— 0.712 p,-1/3 . _
[224] Nu = 0.085 x Re%712py 150 <Re <350 adiator E Elp.
10 | Dittus and Re > 1x10% Auto
Boelter Nu = 0.023 x Re®8pr03 0.7 <Pr<100, L E Gen. -
radiator
[225] L/D > 60
1 P.= 1.0,
Merker Sh = 1.181 x Re%480 1.97 <P;<3.16,
and Hanke Re < 6400 Stagg. E Elp. -
[226]
Sh = 1.212 x Re%676 Re > 6400
Nu = 0.8 X Re%4pr037 In—lin. -
Chen and 40 < Re < 800, _
12 Wung 0.1<Pr<10 A cir
[227] Nu = 0.78 x Re%45pr038 T Stagg. -
Ng > 1,
Nu = 1.7 x Nuy R: <500
5 Z:/a[”z%;; —— Stagg. E |cir | 59
Nu = 1.38 X Nuy N
500 < Re <1000
600 < Rep, < 2000, ) _
Kim and ] B 75<pe<15 In—lin. E Cir. 3.8
: Jj =0.710 X Repy, X N~ *1#1p 038 D =PR=0
Kim [229] R ’ 1 <Ng<4
14 Stagg. 6.2
15 | Khan et 1x10*<Re < .
— 0.64 1/3 — — |
al. [230] Nu = 0.33 X Re’**Pr 3.6x10° In—lin. E Elp. 145
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16

Jacimovic

[231]

180
etal. f= (— + 0.52

R0%5 ) X RS.GSW—OJ

300 < Re <4000

Stagg.

E Cir. 5.7

(Auto.: automotive;

A: analytic; Cir: circular tube; E :
simulation; Stagg.: staggered)

empirical; Elp.: elliptic;

N: numerical; In-lin.: in-line; S:

Table (3): Summary of Literature Survey with DCT.

NO
Authors Configuration Range Conclusions
1
E - Elliptical 13%: Gain of
300 < heat transfer Circular
Matos [22] r ' _ Re< | 25% reduction in PD
= _ " i 800 concerning previous
~f= o - [ studies.
- = I |
2
Elliptic arrange.
852 < Enhancement of 20%
Matos [205] Re < as compared with
8520 circular arrange.
3
An enhancement of
852 < 19% was obtained with
Matos et al. R <* elliptic TBHE, which
[206] 1 &_g was accompanied by a

reduction in circular
TBHE of 32%
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NO

Authors

Configuration

Range

Conclusions

T. Bello-
Ochende
[266]

10°< Ra
<10’
Be =1,
10°

A global correlation
that covers the mixed
convection phase of
study for optimal
spacing distance and
maximum heat transfer
and reports the
important role of (Ra)
and (Be) numbers
within the outcome
correlation.

Marc
Joucaviel
[267]

Be=
108, 10*
and 10°

Counter-cylinder
rotation was more
efficient than the
configuration of
cylinders rotation in
the same direction.

Santos
[268]

|

60< Re
<160

The increase of the
Rayleigh number leads
to a decrease in the
optimum spacing
distance, resulting in a
maximum heat transfer
density.

Page [269]

| el
L L

10' <Ra
<10*

The increase of the
Rayleigh number leads
to a decrease in the
optimum spacing
distance, resulting in a
maximum heat transfer
density.
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NO
Authors Configuration Range Conclusions
8
: \ Utilizing constructal
— { design with elliptic
X = ! : ] Re = configuration reduces
3 s ) (2656 pumping power by
R.L.S. : T | o 5300’ (10%) with optimum
Mainardeset L T | =t ' spacing distance,
T N R 7950, s
al. [215] . I = 'I' 1 and eccentricity, and
: ' ‘ = ~ air dimensional fin
| ]l e B v 10600). density of (0.5, 0.5,
QT L ]' E and 0.006)
| A Il 3 — respectively.
e = | C I =
9 o w )
Adopting entropy
o generation
minimization and
o constructal law as a
Gongnan D Be =0, | mutually coupled
Xie [270] 0.5,1 | technique for the
H 0 utilized pin fin
| exchanger increases
thermal energy stored
- = = - by (10.2%).
d 1 5 dE
10 + 3
' w=1,v=0,7 =0 ) Ra =
-7 —_—— e o -
= APt [~ 3 4
- P : ; %95 10 Fin aspect ratio largely
d ar™—9° - 10%, (Re affects fin Nusselt
G 2 w =0 — r, — b= l"' Z (16 number with a
Lorenzini et “PRE=O _ s 102 3 considerable change
al. [271] b =1 I :-E *10’2 for different values of
-] h‘_-:r. — A y -
s B g I, E 5 * 102 Rayleigh numbers.
a4 J = N 7*10?
R T il i i o X 1103).
o £ =
11
S, The optimum fin
i =731 diameter based on
C(D - OH constructal design
i — maximizes heat
) G b=l ) density with
Lingen = 5 || ® s H 10? <Re | decreasing
Chen [272] ; o P <10° dimensional pressure
{D} = ) difference for a given
T2 gt B Iyl : heat sink shape. The

(a) Top view

W

(b} Front view

PD was found to
increase with increases
in fluid velocity.
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v

AAAAAAAAAAAAAAAAARA

r
“I I 1| |

NO
Authors Configuration Range Conclusions
12 4]
H B
i = symmetr Maximum Nusselt
T p—— 1 — $ .
= v . T [ Ri = number observed with
—ef—L; f : N i
GM. s _HT; . @—r i T (0.1, 0.5, at{gn;veg§e pitch tc:‘
Barros et —| inlet 4 L Sl o =0 I"sr}_ﬂ i 1,5 10) cylinder diameter o
' e [T Y - T A A 1> 2 | (5) and (2.5) for
Al [273] 1 i | L | (Re= .
g g i (100) Richardson numbers of
: * ? = (0.1 and 10),
wecupathon e syinmeLry respectively.
L
13
f
oy an e ——— The optimum spacing
distance at a given
d Rayleigh number
Ahmed Ra=10%, | remains constant for
Waheed et 10% and | all tube diameters. The
al. [274] A P . W . S, 10° results also showed
T that for the same
Rayleigh number and
. W . space size
SIRRRRA AR R ARAN
14 No penetration wall
No shp condition
>
. " .
g -~ R:e f{ORa The optimum shape
B PN was found to have a
104, an
A.L. Razera H 10%) and thermal performance
[275] (10° gain of (40%) in
D @ ) 10* 165 comparison with other
.. . > and 10%) proposed geometries.
L
15
- L >
R
A
: ! Rayleigh | With the increasing
Ahmed : : \ number | Rayleigh number, the
Waheed : : . (10°< | optimum distance
[276] : ! Ra< decreases in
i i : 10%) | accordance
. ; .
i ; ¥
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16 )
— L ey -
| € >
7 :
AT ) .
e With the decreasing of
e R optimum spacing, heat
Ahmed o~ . 3 density increases to a
Waheed {':f 5 ; 10< fo?e maximum value as the
[277] o ; - Bejan number is raised
- R o 1 for all tubes' vertical
axes
s
¥ o
e
17
@ The decreasing of tube
Ahmed 10°< Be flatness with a constant
Waheed < 1‘05 Bejan number leads to
[278] @ - the lowering of the
_________________________ optimum heat density
N :
__________________________ i
18 | | s
3
| ¥4
NB | ok, Optimization with a
oo e constructal design
\; ‘ Be =10 enhanced heat density
A.L. Razera ! 7 . : and " | in the range of (50% to
et. Al,[279] ; ‘ 5 %10 97%) as compared

fewer degrees of
freedom
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(b}

transfer rate density
rises

NO
Authors Configuration Range Conclusions
19 T —— .
- —p \ B The unused flow
. 5t . k Ly 10° < Be | region can be filled
A.[Z%%]an < with smaller blades to
L | 100*10° | produce a more
— — gk ) efficient system.
1l i I_ y Gl . |
20 '
™ -
T : T The performance-
. -
P B—— enhanced as system
— : complexity increases
o B . and as the number of
gcﬁsygé 3! —wa Ly 10° < Be | rated Fins increases to
[281] @ <10® | three and the optimal
M I, e length of Fins
) ! increases with the
g IhE—pm— - 5 ol i Bejan number
x ' ' increases.
o —p - il i
] | . . |-
: &
. . ; ‘ ‘ The flow structure gets
@ . . b s less permeable as the
T. Bello- . ‘ ’ 10% < Be number of Fins grows,
Ochende et. . . ‘ b, ¢ < 1_06 and the flow rate falls.
Al, [282] s = ‘ ‘ '. = Also, the overall heat
® o
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22

Alexandre
K. da Silva
[283]

10" <Ra
<108

Once the complexity
regarding flow
structure is optimized,
then the rate of heat
transfer density was
found to be
maximized.

23

T. Bello-

Ochende et.

Al [284]

t

1Tlf f |

10°<Ra
<10°

The spacing between
large-scale cylinder
increases by irting the
small cylinders in the
unheated region. When
the flow grows faster,
spacing becomes
smaller, while the
cylinders' diameters
reveal a minor change.

24

T. Bello-

Ochende et.

Al [285]

/ -

' 58 --jr)ﬂ""'f":' 2 |
~ ',:5‘ 493 D

7 A |
4 2 |

N st

st #

| ==

10° < Be
<10’

Results were in fair
agreement with
foretelling analytical
outcomes
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25

T. Bello-

Al [286]

Ochende et.

N
B

|
e
a
| |
0,
= 5

|

T,

Re =50

The optimal
configuration for a pin
fin obtained between
(0.05) and (0.2) for
short Fins while a ratio
of pin fins diameters
varied in the range of
(1) and (1.2), and a
ratio of the large fin to
small fin height range
from (0.9) and (1.2).

26

Y. Kim
[287]

C
:d u\f/_/m
2 el

Hotin H
[ G

Hot out

z
Yelax

Impermeable

Gr =10*
Re=
500

For the three vertical
tubes (better to include
the spacing distance
between tubes). For
four tubes (The case of
two vertical tubes of
almost the same
diameters is better in
performance)

27

T. Bello-

Al [288]

Ochende et.

Enhancements were
found influential in the
case of rotating
cylinders aligned on
the same axis of
rotation rather than in
the case of cylinders
aligned on the plane of
the leading edge.
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28

H.
Kobayashi
[289]

Bs= PBsa+ Bais

None

Asymmetry in the
morphing and
evolution of the tree
shape configuration
leaded to better
optimum design

29

H.
Matsushima
et. Al [290]

To0 i
fins 2
7 25
> H R o ~
P ~ conductive >
s .,. i+ base layer > <4
AL - —_— .
'
o heat s

None

Optimal spacing and
height are found for
cases that maximize
the heat transfer rate
and connect optimum
heat transfer with the
spacing distance
between fins in the
constructal design.

30

Page et. Al
[291]

T Loy Do

——

10' <Ra
<10*

The rotation of
cylinders did not
influence maximum
heat transfer density
compared to a
stationary case at large
values of Rayleigh
numbers. Optimum
spacing was found to
be decreased with the
increase of cylinders’
rotational speed.

31

Ahmed
Waheed
[292]

IR
Wololololol

o T e e e e T e e I eI OeY

Utilizing multi-scale
arrangement enhanced
heat transfer density
twice that of the
single-scale
arrangement
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32

Ahmed

Waheed et.

Al [293]

— e —

= Wl

10° < Be
<10°

When the smaller
tubes are irted
between, the bigger
tubes, the heat transfer
rate is increased for
different semi-minor
axes of the larger
tubes.

33

Haldar et.
Al [294]

L Angular

Fin spacing

g

Gr=10°

Maximum heat
transfer can be
obtained with thin fins
of (0.01 m), optimum
fin number of (6), and
optimum fin length of
0.2m)

34

Ibrahim
[295]

Flow

Re =
(4.75 x
10% to
(3.96 x
10%

irreversibility ratio,
FF, and the coefficient
of heat transfer
affected by the
position of the fin
concerning the elliptic
tube surface

35

HALDAR
[296]

--T,u

'

102 < Gr
<10°

As the Grashof number
increases, which is
accompanied by an
increase in both fins
number and length, the
heat transfer rate also
increases
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36 T — Pseudo-outer
o For fins numbers (4 to
e 10), fin efficiency
. .
\ decreases with
/ ",. increasing fins
J. M. WU o+ 1 Ra = number. Numerical
et. Al [297] - ; 7120 | results for eight fins
R \ / configuration reveal
| /-"' that there should be no
5 . Praxs fins aligned in the
- -~ vertical plane.
37 E
= OO0 = Oe ™
i e O y O ;' Pressure
= d O o Q3 e | Adding a splitter Fin to
: & T | Ao g 3D S0 o a fluid flow raises the
Chldlinand = O ~ O ~ O = Re= | Nusselt number, heat
Mangrﬁlkar — — ——e 5500 to | transfer, and lowering
2 (= <>=, ()=, - 14,500 | PD within the tube
etal. [298] S ax O=- O="/1=0 Srressue bank compared to a
v(O=T O= o= = wln, bare cylinder.
P OO D F
38
60 - O AR=1.0
. - At fixed mass flow,
Chidanand 52 9 150 O AR=0.66 greater enhancements
K = A Re< | areattained with
' 3 y ) AR=039 = | increased diameter
gaz?r[uzlgg]r v’ 0 —1 \V/ i O 8000 unfinned tubes but at a
' ' Flat tube 1 —T high penalty in PD and
v pumping power.
. X — Aspect ratio (ARF=v/X
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