

Latest developments in NO₂ gas sensors based on PEDOT: PSS nanocomposites and metal oxides: A comprehensive review

Muatazbullah I. Abdullah¹,
Ahmed H. Ahmed⁴,

[Hiyam M. Ahmed²,](#)
Khalid Saleh⁵,

Abdullah Alaliaan³,
Faiz A. Mohammed⁶.

¹Ministry of Education Directorate General of Education in Kirkuk, Al-Jawhara Intermediate School for Girls, Kirkuk, Iraq.

²Department of Physics, College of Education for Women, Kirkuk University, Kirkuk, Iraq.

³Department of Physics, College of Education for Pure Sciences, University of Samarra, Samarra, IRAQ

⁴ Renewable energy Research Unit, Polytechnic College Hawija Northern Technical University, Kirkuk, Iraq

⁵School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia

⁶Department of Mechanical Technical, Polyphonic college Al-Hawija, Northern Technical University, Kirkuk, 36007, Iraq.

Article Information

Received: 29 – Dec – 2025
Received in Revised form:
27-Jan-2026
Accepted: 31 – Jan - 2026
Published: 03 – Feb – 2026

Corresponding Author:
Hiyam M. Ahmed

Email:
hiyammajeed@uokirkuk.edu.iq

Key words:
PEDOT:PSS, metal oxide nanocomposites, NO₂ gas sensors, chemiresistive sensors, hybrid materials, environmental monitoring, room-temperature sensing.

ABSTRACT

Nitrogen dioxide (NO₂) is toxic atmospheric contaminant having serious impacts on human health and environment. The low concentration detection of NO₂ in high accuracy and high sensitivity is still one of the difficult points in air quality monitoring. Recently, hybrid gas sensors based on the conducting polymer PEDOT:PSS and metal oxide semiconductors have been proposed as potential candidates for high-performance NO₂ sensing. Using the p-type polymer and n-type or p-type metal oxides in nanocomposites can lead to a synergistic effect in terms of improved charge transport, sensitivity, and operation at lower temperatures. Recent developments in the area of PEDOT:PSS/metal oxide nanocomposite-based NO₂ sensing are reviewed with a critical look at the structural and electronic nature of PEDOT:PSS, gas-sensing mechanism of conventional metal oxides, and importance of interface engineering for device performance. It also highlights eco-friendly synthesis techniques e.g. water-based processing and green synthesis of metal oxides, contributing to sustainable production practices for the sensors developed. Major previous works are summarized and discussed on the basis of important performance largeness, such as the detection limit, response/recovery time/temperature/humidity and environment-friendly processing conditions. Although these hybrid systems present obvious opportunities compared with pure sensors, the issues of long-term stability, selectivity under mixed gas environments and reproducibility of the fabrication approaches are still challenging. In general, PEDOT:PSS/metal oxide nanocomposites offer a viable and a sustainable platform for the next-generation NO₂ gas sensors with lavish sensing performance, eco-compatibility, and prospects to be scaled-up for cost-effective fabrication.

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE :
<https://creativecommons.org/licenses/by/4.0/>

Introduction

Atmospheric pollution due to poisonous gases like nitrogen dioxide (NO_2) has been one of the most serious environmental & public health problem on global scale. As a reactive and oxidizing pollutant, NO_2 is the main contaminant derived from combustion sources such as vehicle engines (exhaust) and industrial activities. NO_2 exposure even at low levels for extended periods can cause significant respiratory diseases and contribute to environmental pollution[1-4].

To solve this issue, gas sensors for showing high sensitivity, selectivity and stability toward NO_2 have drawn wide attention. The use of conventional sensors for signal transmission, especially those used in heat exchangers such as thermocouples and electrical resistance sensors, is almost always subject to some degree of error or delay in signal transmission; therefore, this technology is being adopted [5,6]. Novel sensing materials such as hybrid ones have been becoming the promising strategy in recent years to improve the performance of NO_2 sensors. Especially, the composite material of conducting polymer with metal oxide semiconductor has exhibited significant cooperative effects for improving gas sensing performances. Poly(3,4-ethylenedioxothiophene): poly (styrene sulfonate) (PEDOT:PSS), a typical p-type conducting polymer, has been considered because of its relatively high electrical conductivity, good environmental stability and flexible characteristics. The synergistic effect of combining CdS nanoparticles with PEDOT:PSS resulted in a 2.2-fold increase in sensitivity compared to pure PEDOT:PSS. Intriguing results indicate that the significance of GO-PEDOT:PSS has a synergetic effect in sensor applications [7-8].

Combined with metal oxide nanostructures, e.g., SnO_2 , ZnO , NiO , and In_2O_3 PEDOT:PSS can greatly improve charge collection efficacy in the resulting pp Structures at lowered operating temperatures as well reducing response and recovery time. These features render PEDOT:PSS/metal oxide nanocomposites as promising candidates for the new-fangled NO_2 gas sensors [9,10].

Despite the remarkable progress achieved in NO_2 gas sensors based on PEDOT:PSS and metal oxide nanocomposites, several fundamental challenges still limit their large-scale and long-term practical implementation. Among these challenges, long-term stability remains a critical issue, as PEDOT:PSS-based

sensing layers are prone to environmental degradation, including humidity-induced swelling, polymer aging, and interfacial instability with metal oxides, which can lead to gradual performance deterioration over time. In addition, achieving high selectivity toward NO_2 is still challenging due to the presence of interfering oxidizing and reducing gases that can induce competing charge transfer processes at the sensing interface. These limitations are further intensified under real operating conditions, where variations in temperature and humidity may cause signal drift and poor reproducibility. Consequently, recent research efforts have focused on engineering PEDOT:PSS/metal oxide nanocomposites to improve interfacial charge transport, enhance chemical robustness, and promote selective interaction with NO_2 molecules, thereby addressing these persistent challenges [11-13].

In addition, more attention are devoted to the eco-friendly and sustainable fabrication of such hybrids. Green synthetic methods, for example, water-based processes, natural plant extracts and low-temperature routes, are increasingly being employed in the synthesis of sensors to comply with environmental safety and sustainability during the production process [14-15].

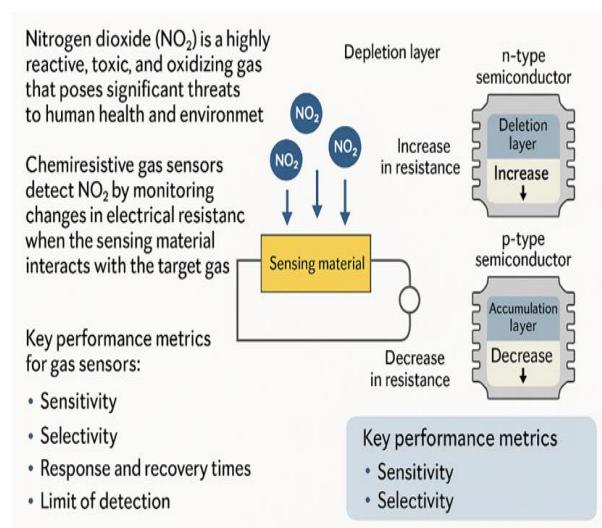
The purpose of this review is to summarize recent enhancements of NO_2 gas sensors constructed by PEDOT:PSS and metal oxide nanocomposites. This review communicates a detailed overview of it covering the sensing mechanisms involved, various techniques used for its fabrication (including green approaches), parameters affecting performance and current issues besides literature dealing with development toward efficient and eco-friendly NO_2 sensing devices.

2- Fundamentals of NO_2 Gas Sensing

Nitrogen dioxide (NO_2) is one of highly reactive, toxic and oxidizing gases that are harmful for human health and environment system. From car exhaust and industrial processes to fossil fuel combustion, NO_2 is a major pollutant in urban air that also contributes to acid rain and photochemical smog. Regulators like the World Health Organization (WHO) have established a very stringent exposure limits, being detrimental to human health even down to 40ppb [16-19]. Therefore, on-site, accurate and real-time detection of NO_2 gas has been a high-priority goal in environmental monitoring. Chemiresistive gas sensors are one of the most promising sensing techniques based on simplicity, cost effectiveness, scalability, and

compatibility to miniaturization among various sensing technologies [20,21].

The chemiresistive GSSs detect the resistance change caused by the interaction between sensing material and target gas. NO₂'s role as strong electron acceptor is reflected in its adsorption on the surface of a semiconducting material by withdrawing electrons from conduction band, which increases resistance in n-type SiCH film or decreases that in p-type SS(SH)based PEDOT:PSS [22-24].


Sensitivity (i.e., the magnitude of response to a given gas concentration), selectivity (i.e., discriminating NO₂ from other species in mixed gas) are among key efficiency measurements for gas sensors along with the response and recovery times (time-related aspects of signal changes during exposure and removal of target gases), LOD, operating temperature, and long-term stability [23]. It is still a challenge to obtain high performance with respect to these performances, especially for NO₂ because of its low concentration and reactivity [25, 26].

To cope with such challenges, emerging materials including metal oxide semiconductors and conducting polymers (particular the hybrid ones) have been broadly studies. These nanosheets provide adjustable surface chemistry, high surface-volume ratios, and efficient charge pathways, thereby improving sensing performance. The basic operation of NO₂ detection based on chemiresistive sensors is shown as a model above in Figure 1 with different response between n-type and p-type semiconductors [27-29].

3. PEDOT:PSS: Structure, Properties, and Role in Gas Sensing

One most studied conducting polymer in the field of organic electronics and gas sensor sensing is poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), generally PEDOT:PSS. It consists of conjugated PEDOT, which gives it electrical conductivity and polyanion PSS (provides water dispersibility and film forming). This special PEC leads to a colloidal gel which can be simply prepared in aqueous solutions, and therefore it is very amenable for low-cost and large-scale process also as spin-coating, inkjet printing, drop casting [30-33].

PEDOT:PSS possesses a repertoire of desirable features (i.e., high electrical conductivity, up to 1000 S/cm after treatment, mechanical flexibility, optical transparency and thermal stability). It could be an excellent candidate for flexible and wearable gas sensors with such properties. In addition, PEDOT:PSS is also p-type semiconductor thus sensitive to the oxidizing gases like NO₂, as it interacts with electron accepting molecules especially those which can change the carrier density of charges and so the conductivity of polymer [34.35.36].

Figure 1: NO₂ sensing mechanism in n-type and p-type semiconductors.

For gas sensing, the behavior of PEDOT:PSS is controlled by the modulation of its hole concentration when contacting with analyte gases. NO₂ molecules attract electrons from the polymer chains and, in turn increasing hole concentration, thereby improving conductivity of the PEDOT:PSS surface. Such a behavior is different from that of n-type metal oxides, which often experience the resistance increase in response to NO₂ [37-39].

Yet, pure PEDOT:PSS has certain shortcomings, like poor selectivity and humidity sensitivity and a relatively low specific surface area that have an impact on the gas adsorption ability. To address these problems, PEDOT:PSS has been hybridized with nanostructured materials such as metal oxides [10-20], carbon nanotubes (CNTs) [21-27], and graphene [28-30]. These composites combine the large surface area and gas adsorption ability of inorganic units with processability and electronic conductivity from polymer, which can bring the enhanced sensitivity, stability, selectivity [40-42].

Thus, PEDOT:PSS functions not only as an active sensing material but also as conductive matrix or charge transport channel for hybrid sensor constructs. Especially, its tunability (by doping, post-treatment, as well as nanocomposite formation) offers a flexible base for the production of novel NO₂ gas sensors. The chemical structure, principal properties, sensing properties, and hybridization possibilities of PEDOT:PSS are described in Figure 2[43-45].

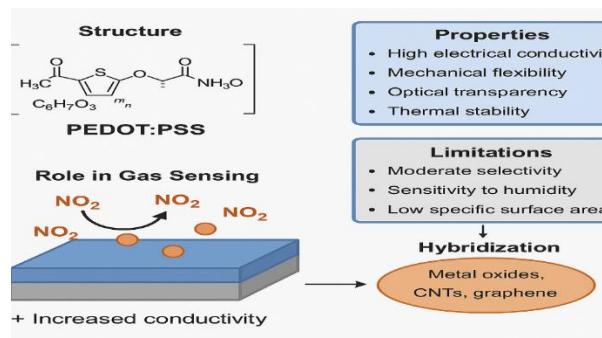


Figure 2: PEDOT:PSS in NO_2 Sensing.

3. Metal Oxide Semiconductors in NO_2 Detection

Metal oxide semiconductors (MOS) are among the most important families of materials in gas sensing since they present great chemical stability, adjustable electronic properties and abundant surface reactivity with gas molecules. Typically used MOS materials for the NO_2 sensing are tin oxide (SnO_2), zinc oxide (ZnO), nickel oxide (NiO), tungsten oxide (WO_3), and indium oxide (In_2O_3) which exhibit different band structures, surface chemistries, as well as response characteristics based on their stoichiometry, morphology and growth parameters [46,47].

For MOS, the gas sensing mechanism is based usually on surface adsorption and charge transfer process. Exposure to air/MOS oxygen molecules adsorb on the MOS surface and trap electrons from conduction band, resulting chemisorbed species as O^- , O_2^- or O_2^{2-} . This results in an electron-depletion layer formed near the surface, and so increases the resistance of material (in n-type MOS) or decreases it (in p-type MOS) [48,49].

When the device is exposed to a strong oxidant gas such as NO_2 , molecules of this type react either with the adsorbed oxygen or directly with the solid surface in order to capture electrons and broaden the depleted region on n type semiconductors like SnO_2 or ZnO . This leads to an appreciable rise in electric resistance. In contrast, in p-type MOS (e.g., NiO and CuO), NO_2 is inclined to extract electrons from valence band, which enhances the hole concentration, thereby lowering the resistance [50,51].

The performance of MOS based NO_2 sensors is dominated by several issues [52-54]:

Morphology and surface size: Nano structures (nanorods, nanowires, hollow spheres) possess large surface-to-volume ratio leading to gas adsorption.

Doping and defect control (modification): The introducing of the dopant (Sb, Al, or rare metal) can effectively tune band structures to enhance charge carrier mobility/selectivity.

Operating temperature: There are many MOS materials that require high operating temperatures (150–300 °C) for maximum sensor sensitivity because of thermal activation of surface reactions, which will restrict the practical integration into low-power and flexible applications.

However, the MOS-based sensors are still hampered by some deficiencies including high operation temperature, influence of humidity and longer response/recovery times although they display high sensitivity and tunable selectivity. These limitations have stimulated the development of hybrid materials that combine the MOS with other semiconductors, such as conducting polymers or carbon nanostructures (CNs), to take advantage of synergism between chemical–physical properties and increase the overall sensing capability [55,56].

Accordingly, metal oxide semiconductors are a good candidate for NO_2 detection and they can be combined with organic components as PEDOT:PSS, which material paves the way to future sensors whose performance is enhanced under environment conditions. The basic properties and sensing principle of the metal oxide semiconductor for NO_2 detection are outlined in Figure 3 [57,58].



Figure 3: Metal Oxide Semiconductors for NO_2 Sensing.

4. Synergistic PEDOT:PSS/Metal Oxide Nanocomposites for NO_2 Sensing

Conducting polymers such as PEDOT:PSS integrated with metal oxide semiconductors resulted hybrid nanocomposites for enhanced performance of gas sensors. These improvements are due to the synergistic effect caused by the polymer-metal oxide interaction, in which their mutually reinforcing properties help overcome each other's limitations [59,60].

4.1 Mechanism of Enhancement

Pathways: PEDOT:PSS acts as a conducting medium that assists rapid carrier exchange between

the sensing sites and the electrodes, and reduces the response time. The enhancement of NO_2 sensitive performance is driven by several related effects [61-64]:

Heterojunction formation: When p-type PEDOT:PSS is interfaced with n-type metal oxide (SnO_2 , ZnO), a p-n heterojunction is established. To yield increased separation of charge and energy barriers due to gas exposure, causing enhanced electrical sensitivity.

Charge transport and recovery times.

Low operating temperature: A conductive polymer provides a reduction in the thermal activation energy for gas interaction, so high-temperature oxides can be operated at room temperature.

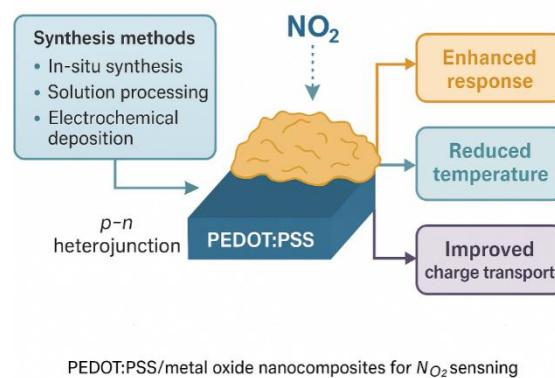
Flexibility: The hybrid configuration is compatible with flexible, wearable sensor designs.

4.2 Synthesis Strategies and Their Impact

Table 1: Various synthetic approaches have been developed to prepare PEDOT:PSS/metal oxide nanocomposites, each with advantages and limitations:

Method	Description	Advantages	Limitations
In-situ polymerization [65]	PEDOT polymerized in presence of oxide particles	Strong interfacial adhesion, uniform coating	Complex chemical control
Physical blending [66]	Pre-synthesized PEDOT:PSS and oxide powders mixed	Simplicity, scalability	May suffer from poor dispersion
Layer-by-layer (LbL) [67]	Sequential deposition of polymer and oxide layers	Precise thickness control, reproducibility	Time-consuming process
Sol-gel incorporation [68]	PEDOT:PSS added to oxide precursor solution	Low-temperature processing, good morphology control	Risk of polymer degradation during gelation

The choice of synthesis technique influences [69-71]:


- Particle dispersion within the polymer matrix.
- Interfacial contact area.
- Pore structure and surface area.
- The overall sensor sensitivity, selectivity, and stability.

4.3 Case Examples and Observations

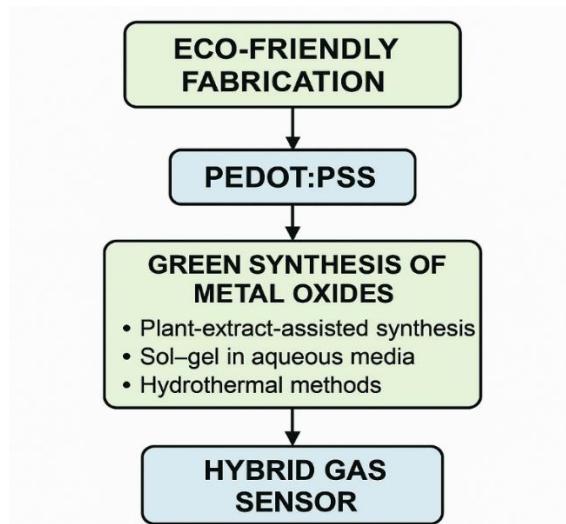
The efficacy of such combination has been recently emphasized in several studies:

- Hydrothermal mixture of PEDOT:PSS/ ZnO nanocomposites demonstrated a fast response (<20 s) and high humidity resistance [72].
- SnO_2 /PEDOT:PSS hybrids with stable room temperature operation were selective toward NO_2 [72].
- NiO /PEDOT:PSS composites obtained with a green precursor route presented mechanical flexibility as well as reproducibility in several cycles [74].

These cases attest that judicious modulation of the composite interface and morphology can play a key role in exploring excellent sensing servers. The schematic diagram of structure, synthesis approach and functional complementarity of PEDOT:PSS/metal oxide nanocomposite for NO_2 detection is presented in Figure 4.

Figure 4: PEDOT:PSS with Metal Oxides.

5. Eco-Friendly Approaches in Fabricating PEDOT:PSS/Metal Oxide Sensors


Due to increasing environmental issues and the demand for sustainable technologies, research related to environmentally friendly fabrication methods of the gas sensing materials has been developed. Particularly, application of green synthesis approaches to PEDOT:PSS/metal oxide nanocomposites turned out to be in good agreement with the principles of green chemistry as it provided pathways for the reduction in energy consumption and hazardous chemicals usage, which contributing to better biocompatibility [75]. Since it is water-

processable and dispersible in aqueous solutions, PEDOT:PSS is intrinsically much more environmentally friendly than other conducting polymers that are often processed from organic solvents. Its compatibility with low-temperature processing, such as ink-jet printing, spray coating or solution casting, also helps its implementation in green electronics [76-78]. Meanwhile, the synthesis of metal oxides formerly driven by high temperatures and toxic precursors has been dramatically moving to greener routes. These include: Plant-extract-assisted synthesis: in this method bioactive compounds present in the natural extracts (e.g., tea, leaves or flowers) serve as reducing and capping agents [79].

Sol-gel approaches in aqueous media provide good control of morphology at low temperature [80]. Room-temperature precipitation or hydrothermal method without the calcination process, lowered carbon footprints [81]. These methods can also be used together successfully in hybrid systems. For example, metal oxide nanoparticles produced by green chemistry methods can be incorporated in PEDOT:PSS matrices without subsequent harsh treatment.

These systems not only achieve superior performance as gas sensors but pave the way toward safe, scalable and sustainable preparation methods [82,83]. These results potentially open up an exciting direction for the future research of NO₂ gas sensors towards cost, power and environmentally friendly sensor fabrication which is essential for wide applications in urban air monitoring and wearable sensing devices. Schematic illustration of the greentechnology fabrication process for PEDOT:PSS/metal oxide hybrids is shown in Figure 5, which presents natural steps regarding organic and inorganic components to realize high performance gas sensors [84-86].

Observations and Trends Several general trends can be drawn from the studies reviewed: Room temperature operation is already under popular use, the conductivity and softness of PEDOT:PSS mostly are members to this. ZnO and SnO₂ are still the most in-depth studied metal oxides, while NiO and In₂O₃ form new group of attention because they have high stability and are p-type. Sol-gel, hydrothermal and electrodeposition techniques are more frequently used in fabrication efforts, particularly for eco-friendly low-energy routes of synthesis. Superior performance figures are invariably accompanied by well-dispersed nano-architectures and closer contacts between the polymer and oxide components.

Figure 5: Eco-friendly PEDOT:PSS/Metal Oxide Sensor Design.

	PEDOT _x /SSO	ZnO	NiO	In ₂ O ₃	V ₂ O ₅
LOD	100 ppb	200 ppb	75 ppb	20 ppb	
Operating Temp	Room temp	60°C	Room temp	Room temp	
Response Time (s)	23 s	18 s	30 s	25 s	
Fabrication	Spin Coating	Hydro-thermal	Sol-Gel	Electrodeposition	
Green Synthesis	✓	✓	✓	✓	
	✓	✗	✓	✓	

Figure 6: PEDOT:PSS/metal oxide nanocomposites for NO₂ sensing.

Conclusions and Future Perspectives

PEDOT:PSS has been found to have a lot of potential in improving the performance of NO₂ gas sensors when inserted with metal oxide semiconductor. These hybrid nanocomposites retain high electrical conductivity, flexibility and room temperature processability of PEDOT:PSS and the strong gas adsorption capacity and surface reactivity of metal oxide. This cooperation led to a remarkable performance of gas sensing properties in terms of high sensitivity, fast response and recovery time with low detection limit. We have summarized the recent progress in material design, fabrication methods and sensing performance. More importantly, more and more researches have been focused on green synthesis owing to the policy of green chemistry. Such work is

vital to turn the science laboratory-based gas sensor devices to be practical and sustainable environmental monitoring instrument.

However, although promising, there are a number of outstanding challenges including long term operational stability, reproducibility in fabrication, response to humidity and selectivity under complex gas mixtures. To address these challenges, a better understanding of the charge transfer process at polymer/oxide interfaces and new materials synthesis and device engineering will be needed. Further studies From the prospective, future research should concentrate on :

Multi-gas discrimination using sensor arrays.

Using data-driven methods like machine-learning for signal inference.

Beyond sensitive: flexible and wearable gas sensor with low power consumption.

Bio-based and recyclable materials in sustainable manufacturing. In summary, PEDOT:PSS/metal oxide nanocomposites offer a versatile and promising platform for next generation NO₂ gas sensors that link high performance functionality with environmental consciousness.

Acknowledgements

The authors would like to thank their respective institutions for providing technical assistance and access to the facilities required to carry out this work.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Credit Author Statement

Muatazullah Ibrahim Abdullah: Conceptualization, Methodology, Investigation, Formal analysis, Data curation, Validation, Visualization, Writing – original draft. Hiyam Majeed Ahmed: Methodology, Investigation, Validation, Writing – review & editing. Abdullah Alaliaan: Methodology, Investigation, Formal analysis. Ahmed H. Ahmed: Investigation, Resources, Data curation. Khalid Saleh: Supervision, Writing – review & editing, Resources. Faiz A. Mohammed: Conceptualization, Supervision, Project administration, Funding acquisition, Writing – review & editing.

References

- [1] Vigna, L., et al. "The effects of secondary doping on ink-jet printed PEDOT: PSS gas sensors for VOCs and NO₂ detection." *Sensors and Actuators B: Chemical* 345 (2021): 130381.
- [2] Farea, Maamon A., et al. "Enhanced NO₂ sensing performance of CdS nanoparticle-modified PEDOT: PSS composite: a systematic study of ultrasensitivity and reliability." *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 703 (2024): 135305.
- [3] Faisal, M., et al. "Electrochemical detection of nitrite (NO₂) with PEDOT: PSS modified gold/PPy-C/carbon nitride nanocomposites by electrochemical approach." *Journal of Industrial and Engineering Chemistry* 121 (2023): 519-528.
- [4] Dutta, Priyanka, et al. "Ultrasensitive NO₂ Gas Sensor at Room Temperature Based on a Glycerol-Cross-Linked PEDOT: PSS-MoS₂ Nanocomposite." *ACS Applied Polymer Materials* 7.1 (2024): 94-105.
- [5] Hasan, Ahmed, Maki H. Zaidan, and Manar SM Al-Jethelah. "Experimental Investigation in Cross-Flow Heat Transfer of Air Over LFFT-BHE." *NTU Journal of Renewable Energy* 7.1 (2024): 34-45.
- [6] Hasan, Ahmed, Maki H. Zaidan, and Manar SM Al-Jethelah. "Heat Transfer and Fluid Flow Over A Bank of Longitudinally Finned Flat Tubes: A Numerical Study." *NTU Journal of Renewable Energy* 7.1 (2024): 46-56.
- [7] Farea, Maamon A., et al. "Enhanced NO₂ sensing performance of CdS nanoparticle-modified PEDOT: PSS composite: a systematic study of ultrasensitivity and reliability." *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 703 (2024): 135305.
- [8] Pasupuleti, Kedhareswara Sairam, et al. "Boosting of NO₂ gas sensing performances using GO-PEDOT: PSS nanocomposite chemical interface coated on langasite-based surface acoustic wave sensor." *Sensors and Actuators B: Chemical* 344 (2021): 130267.
- [9] Beniwal, Ajay, et al. "Additive strategies to mitigate humidity interference effects on PEDOT: PSS sensors for ammonia detection." *IEEE Sensors Journal* (2025).
- [10] Sayyad, Pasha W., et al. "Chemiresistive SO₂ sensor: graphene oxide (GO) anchored poly (3, 4-ethylenedioxythiophene): poly (4styrenesulfonate)(PEDOT: PSS)." *Applied Physics A* 126.11 (2020): 857.
- [11] Ramos Canabarra dos Santos, Talitha, et al. "Gas sensor based on highly effective slot-die printed PEDOT: PSS@ ZnO hybrid nanocomposite for methanol detection." *ACS Applied Materials & Interfaces* 17.9 (2024): 13065-13073.
- [12] Ragab, H. M., et al. "High-performance NO₂ sensing with SnO₂/rGO/PEDOT composite for advanced pollution control applications." *Inorganic Chemistry Communications* 175 (2025): 114133.
- [13] Li, Qingting, Wen Zeng, and Yanqiong Li. "Metal oxide gas sensors for detecting NO₂ in industrial exhaust gas: Recent developments." *Sensors and Actuators B: Chemical* 359 (2022): 131579.

[14] Lee, Seunghyeon, Yeongbeom Hong, and Bong Sup Shim. "Biodegradable PEDOT: PSS/Clay Composites for Multifunctional Green-Electronic Materials." *Advanced Sustainable Systems* 6.2 (2022): 2100056.

[15] Dulal, Marzia, et al. "Sustainable, Wearable, and Eco-Friendly Electronic Textiles." *Energy & Environmental Materials* 8.3 (2025): e12854.

[16] Latino, Mariangela Catena, and Giovanni Neri. "Chemoresistive metal oxide gas sensor: working principles and applications." *Attidella Accademia Peloritana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali* 99.S1 (2021): 41.

[17] Kwoka, Monika, and Jacek Szuber. "Studies of NO₂ gas-sensing characteristics of a novel room-temperature surface-photovoltage gas sensor device." *Sensors* 20.2 (2020): 408.

[18] Ghosh, Ruma. "Resistive Sensors: Fundamentals to Applications." *Gas Sensors*. CRC Press, 2022. 29-52.

[19] Kushwaha, Aditya, et al. "Enhanced NO₂ gas sensing in nanocrystalline MoS₂ via swift heavy ion irradiation: an experimental and DFT study." *ACS Sensors* 9.11 (2024): 5966-5975.

[20] Amu-Darko, Jesse NiiOkai, et al. "Low-temperature NO₂ gas-sensing system based on metal-organic framework-derived In₂O₃ structures and advanced machine learning techniques." *Inorganic Chemistry* 63.35 (2024): 16429-16441.

[21] Feng, Zhiyu, et al. "Highly-sensitive photoacoustic gas sensor with dual resonant modalities for simultaneous NO and NO₂ detection." *Sensors and Actuators B: Chemical* 434 (2025): 137596.

[22] Mazzio, Katherine A., et al. "P-Type-to-N-Type transition in hybrid Ag_xTe/PEDOT: PSS thermoelectric materials via stoichiometric control during solution-based synthesis." *ACS Applied Energy Materials* 3.11 (2020): 10734-10743.

[23] Ghali, Mohsen, Cyril O. Ugwuoke, and Ahmed Abd El-Moneim. "Solvent free spray coated n type PEDOT PSS thin film for high performance homojunction diode." *Scientific Reports* 15.1 (2025): 20275.

[24] Yuan, Dafei, Wuyue Liu, and Xiaozhang Zhu. "Efficient and air-stable n-type doping in organic semiconductors." *Chemical Society Reviews* 52.11 (2023): 3842-3872.

[25] Wang, Yuying, et al. "Adsorption Removal of NO₂ Under Low-Temperature and Low-Concentration Conditions: A Review of Adsorbents and Adsorption Mechanisms." *Advanced Materials* 37.5 (2025): 2401623.

[26] Nihill, Kevin J., et al. "Influence of the NO/NO₂ ratio on oxidation product distributions under high-NO conditions." *Environmental Science & Technology* 55.10 (2021): 6594-6601.

[27] Wuloh, Jonah, Eric SelormAgorku, and Nathaniel OwusuBoadi. "Modification of metal oxide semiconductor gas sensors using conducting polymer materials." *Journal of Sensors* 2023.1 (2023): 7427986.

[28] Lee, Eun Goo, et al. "Conductive polymer-assisted metal oxide hybrid semiconductors for high-performance thin-film transistors." *ACS Applied Materials & Interfaces* 13.7 (2021): 8552-8562.

[29] Jadoun, Sapana, et al. "Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review." *Environmental chemistry letters* 20.3 (2022): 2063-2083.

[30] Vigna, L., et al. "The effects of secondary doping on ink-jet printed PEDOT: PSS gas sensors for VOCs and NO₂ detection." *Sensors and Actuators B: Chemical* 345 (2021): 130381.

[31] Farea, Mohammed O., et al. "High performance of carbon monoxide gas sensor based on a novel PEDOT: PSS/PPA nanocomposite." *ACS omega* 7.26 (2022): 22492-22499.

[32] Tseng, Shih-Feng, et al. "Synthesis of Ti₃C₂T_x/ZnO composites decorated with PEDOT: PSS for NO₂ gas sensors." *The International Journal of Advanced Manufacturing Technology* 126.5 (2023): 2269-2281.

[33] Abdullah, Muatazbullah Ibrahim, Adnan R. Ahmad, and Ameer F. Abdulameer. "Fabrication and Characterization of Humidity Sensors Based on PEDOT: PSS Doped with Gold and Silver Nanoparticles by Laser Ablation." *International Journal of Nanoscience* 22.05 (2023): 2350038.

[34] Dutta, Priyanka, et al. "Ultrasensitive NO₂ Gas Sensor at Room Temperature Based on a Glycerol-Cross-Linked PEDOT: PSS-MoS₂ Nanocomposite." *ACS Applied Polymer Materials* 7.1 (2024): 94-105.

[35] Benjamin, Innocent, et al. "RETRACTED ARTICLE: Single-atoms (N, P, S) encapsulation of Ni-doped graphene/PEDOT hybrid materials as sensors for H₂S gas applications: intuition from computational study." *Scientific Reports* 13.1 (2023): 18856.

[36] Kamalabadi, Mahdie, et al. "for Device Applications." *Advances in Nanostructured Materials* (2022): 57.

[37] Farea, Maamon A., et al. "Enhanced NO₂ sensing performance of CdS nanoparticle-modified PEDOT: PSS composite: a systematic study of ultrasensitivity and reliability." *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 703 (2024): 135305.

[38] Pasupuleti, KedhareswaraSairam, et al. "Boosting of NO₂ gas sensing performances using GO-PEDOT: PSS nanocomposite chemical interface coated on langasite-based surface acoustic wave sensor." *Sensors and Actuators B: Chemical* 344 (2021): 130267.

[39] Rath, Ronil J., et al. "Organic-Based Chemiresistive Sensors for Detection of Water-Soluble Gases: Strategies and Roadmap for Enhancing Sensing Performance." *Advanced Functional Materials* 35.11 (2025): 2417323.

[40] Gao, Nan, et al. "Application of PEDOT: PSS and its composites in electrochemical and electronic chemosensors." *Chemosensors* 9.4 (2021): 79.

[41] Kumar, Atul, et al. "Hybrid MoS₂/PEDOT: PSS sensor for volatile organic compounds detection at room temperature: Experimental and DFT insights." *ACS Applied Nano Materials* 7.23 (2024): 27599-27611.

[42] Dong, Rongqing, et al. "Conducting Polymers-Based Gas Sensors: Principles, Materials, and Applications." *Sensors* 25.9 (2025): 2724.

[43] Li, Yingchun, et al. "Design Strategies of PEDOT: PSS-Based Conductive Hydrogels and Their Applications in Health Monitoring." *Polymers* 17.9 (2025): 1192.

[44] Huang, Yewei, Lingfeng Tang, and Yuanwen Jiang. "Chemical strategies of tailoring PEDOT: PSS for bioelectronic applications: Synthesis, processing and device fabrication." *CCS Chemistry* 6.8 (2024): 1844-1867.

[45] Yang, Yan, Hua Deng, and Qiang Fu. "Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices." *Materials Chemistry Frontiers* 4.11 (2020): 3130-3152.

[46] Lv, Ya-Kun, et al. "Construction of organic-inorganic "chelate" adsorption sites on metal oxide semiconductor for room temperature NO₂ sensing." *Journal of Hazardous Materials* 432 (2022): 128623.

[47] Peterson, Philip JD. Theory and practice of the use of metal oxide semiconductor pollution sensors. Diss. University of Leicester, 2020.

[48] Khomarloo, Niloufar, et al. "Overall perspective of electrospun semiconductor metal oxides as high-performance gas sensor materials for NO_x detection." *RSC advances* 14.11 (2024): 7806-7824.

[49] Gautam, Yogendra K., et al. "Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges." *Royal Society open science* 8.3 (2021): 201324.

[50] Wawrzyniak, Jolanta. "Advancements in improving selectivity of metal oxide semiconductor gas sensors opening new perspectives for their application in food industry." *Sensors* 23.23 (2023): 9548.

[51] Chai, Hongfeng, et al. "Stability of metal oxide semiconductor gas sensors: A review." *IEEE Sensors Journal* 22.6 (2022): 5470-5481.

[52] Veríssimo, M. I. S. "A critical review of the analytical performance of the most recent MOS-based gas sensors for indoor air quality monitoring of WHO priority pollutants." *TrAC Trends in Analytical Chemistry* 178 (2024): 117813.

[53] Nadargi, Digambar Y., et al. "Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors." *Journal of Materials Science* 58.2 (2023): 559-582.

[54] Patil, Aishwarya G., BidhanPramanick, and ApekshaMadhukar. "MOS Based Gas Sensors for Monitoring of Air Pollution: A Review." *IEEE Sensors Journal* (2025).

[55] Patil, Aishwarya G., and ApekshaMadhukar. "MOS Based Sensor Technology for Monitoring and Controlling." *Pollution Control for Clean Environment—Volume 2: Proceedings of ICPCE 2023* 416 (2024): 35.

[56] Tyagi, Shrestha, et al. "Metal oxide nanomaterial-based sensors for monitoring environmental NO₂ and its impact on the plant ecosystem: A review." *Sensors & Diagnostics* 1.1 (2022): 106-129.

[57] Farea, Maamon A., et al. "Enhanced NO₂ sensing performance of CdS nanoparticle-modified PEDOT: PSS composite: a systematic study of ultrasensitivity and reliability." *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 703 (2024): 135305.

[58] Ragab, H. M., et al. "High-performance NO₂ sensing with SnO₂/rGO/PEDOT composite for advanced pollution control applications." *Inorganic Chemistry Communications* 175 (2025): 114133.

[59] Yan, Yan, et al. "Conducting polymer-inorganic nanocomposite-based gas sensors: a review." *Science and Technology of Advanced Materials* 21.1 (2020): 768-786.

[60] Gao, Nan, et al. "Application of PEDOT: PSS and its composites in electrochemical and electronic chemosensors." *Chemosensors* 9.4 (2021): 79.

[61] Behboodian, Reza. ZnO-PEDOT: PSS nanocomposites as high-performance inorganic/organic hybrid UV photodetectors. Diss. Macquarie University, 2023.

[62] Karmouch, Rachid, et al. "PEDOT: PSS/ZnO heterojunctions: resistive switching behavior in memory devices." *Journal of Materials Science: Materials in Electronics* 36.2 (2025): 165.

[63] Zang, Zhigang, WensiCai, and Yong Zhou. *Metal Oxide Semiconductors: Synthesis, Properties, and Devices*. John Wiley & Sons, 2023.

[64] Zhang, Yingjuan, et al. "Failure mechanism analysis and emerging strategies for enhancing the photoelectrochemical stability of photoanodes." *ChemSusChem* 18.2 (2025): e202401420.

[65] Karst, Adèle, et al. "Synthesis of PEDOT particles and manufacturing of electrically-conductive PEO/PEDOT thermoplastic composites by twin-screw extrusion." *Polymer* 290 (2024): 126577.

[66] Ghosh, Tuhin, and Debabrata Pradhan. "Low-temperature processed additive-incorporated CsPbIBr 2-based inverted perovskite solar cells." *Journal of Materials Chemistry C* 12.3 (2024): 1077-1090.

[67] Luo, Siwei, et al. "Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents." *Nature Communications* 14.1 (2023): 6964.

[68] Wang, Yihuang, et al. "Effects of the addition of tin powder to perovskite precursor solutions on band bending at PEDOT: PSS/perovskite interfaces in mixed-cation mixed-halide tin perovskite solar cells." *The Journal of Physical Chemistry Letters* 15.24 (2024): 6392-6397.

[69] Noah, Naumih M. "Design and synthesis of nanostructured materials for sensor applications." *Journal of Nanomaterials* 2020.1 (2020): 8855321.

[70] Luo, Hao, et al. "Nanoarchitected porous conducting polymers: from controlled synthesis to advanced applications." *Advanced materials* 33.29 (2021): 2007318.

[71] Khdary, Nezar H., Basha T. Almuarqab, and Gaber El Enany. "Nanoparticle-embedded polymers and their applications: a review." *Membranes* 13.5 (2023): 537.

[72] Arjun, K., and BalasubramanianKarthikeyan. "Flexible ultraviolet photodetector based on flower-like ZnO/PEDOT: PSS nanocomposites." *Applied Physics A* 128.5 (2022): 449.

[73] Vázquez-López, Antonio, David Maestre, and Ana Cremades. "Thermoelectric Performance of Hybrid Inorganic/Organic Composites Based on PEDOT: PSS/Tin (II) Oxide." *ChemPhysChem* 25.14 (2024): e202300877.

[74] Аймұханов, А. К., et al. "INVESTIGATION OF OPTICAL AND ELECTRO-PHYSICAL CHARACTERISTICS OF COMPOSITE FILMS NIO/PEDOT: PSS." *Eurasian Physical Technical Journal* 17.2 (34) (2020): 55-60.

[75] Hosseini-Babaei, Faramarz, and Alireza Karimpour. "Highly Rectifying Water-Mediated Hydrogen Bond-Coupled Organic-Inorganic Interfaces." *ACS Applied Materials & Interfaces* 15.28 (2023): 34230-34239.

[76] Ji, Zhen, et al. "Organic thermoelectric devices for energy harvesting and sensing applications." *Advanced Materials Technologies* 9.21 (2024): 2302128.

[77] Tran, Tuan Sang, et al. "Solution-Processable Polymer Nanocomposites for Electromagnetic Interference Shielding." *Advanced Materials Interfaces* (2025): 2500225.

[78] Lu, Yang. *Aerosol Vapor Synthesis of Organic Processable PEDOT Particles and Measuring Electric Conductivity Using a 3D Printed Probe Station*. Diss. Washington University in St. Louis, 2021.

[79] Gebre, ShushayHagos. "Bio-inspired synthesis of metal and metal oxide nanoparticles: the key role of phytochemicals." *Journal of Cluster Science* 34.2 (2023): 665-704.

[80] Catauro, Michelina, and Stefano VecchioCipriotti. "Characterization of hybrid materials prepared by sol-gel method for biomedical implementations. A critical review." *Materials* 14.7 (2021): 1788.

[81] Kumari, Neha, et al. "Environmentally sustainable techniques for rGO synthesis: focus on spun calcination and clean technology advances." *Journal of Inorganic and Organometallic Polymers and Materials* 35.2 (2025): 699-723.

[82] Sarkar, Suman, et al. "Structural and electrical behaviours of PEDOT: PSS thin films in presence of negatively charged gold and silver nanoparticles: a green synthesis approach." *Synthetic Metals* 279 (2021): 116848.

[83] Huang, Yewei, Lingfeng Tang, and Yuanwen Jiang. "Chemical strategies of tailoring PEDOT: PSS for bioelectronic applications: Synthesis, processing and device fabrication." *CCS Chemistry* 6.8 (2024): 1844-1867.

[84] Sumdani, MdGulam, et al. "Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review." *Polymer Engineering & Science* 62.2 (2022): 269-303.

[85] Wang, Jintao, et al. "Recent Progress in Silver Nanowire-Based Transparent Conductive Electrodes." *Advanced Energy and Sustainability Research* (2025): 2500033.

[86] Islam, GM Nazmul, Azam Ali, and Stewart Collie. "Textile sensors for wearable applications: A comprehensive review." *Cellulose* 27.11 (2020): 6103-6131.