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    Photovoltaic (PV) modules experience a marked efficiency drop when the cell 

temperature exceeds the nominal operating range. This study proposes an AI-driven 

cooling control framework that couples short-term temperature forecasting with 

adaptive decision-making to maximize the net energy yield under tropical operating 

conditions. This study used a six-month, 1-minute-resolution dataset collected near 

Kuala Lumpur, Malaysia, integrating IoT field measurements (PV rear-surface 

temperature, on-site irradiance, ambient temperature, relative humidity, wind speed, 

and inverter energy output) with meteorological/irradiance archives (MetMalaysia 

and the NREL Solar Radiation Database), resulting in approximately 2.6×10^5 time-

stamped samples. After preprocessing (1.8% missing data handled via interpolation 

and KNN imputation; z-score standardization), a convolutional neural network 

(CNN) predicted the near-future PV surface temperature, and a reinforcement 

learning (RL) agent selected the cooling mode (passive, low-power fan, high-power 

fan, or water spraying) to balance thermal mitigation against auxiliary energy 

consumption. CNN achieved an RMSE, MAE, and R² of 1.38°C, 1.04°C, and 0.95, 

respectively, enabling anticipatory control that reduced unnecessary switching. 
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Introduction 

      Solar energy is the most conservative source of 

renewable energy, and photovoltaic (PV) panels are 

the most widespread method of transforming sunlight 

into electricity. Nonetheless, the PV efficiency 

declines with the panel temperatures; the average rise 

is at 0.4-0.5 percent/°C beyond 25°C. Proper thermal 

control is necessary to achieve a high energy output. 

Other traditional cooling systems, such as passive heat 

sinks, forced air, and spraying of water, cannot 

dynamically respond to changing environmental 

conditions and absorb unnecessary energy or cool 

incompetently. Smart cooling devices can be actively 

implemented in real time owing to the development of 

deep learning (DL) and artificial neural networks 

(ANNs) to predict the panel temperature and take 

corrective measures [1], [2]. 

      This study constructed and experimented on a 

deep learning-based solar panel cooling optimization 

system that maximizes the utilization of the available 

cooling power system to obtain peak efficiency with 

minimum auxiliary power. The suggested framework 

applies instantaneous environmental data, equations 

of metrics of panel performance, and cooling system 

parameters to estimate the most effective cooling 

plan. The sources of environmental information in this 

study included real-time and historical information 

acquired through various channels. In particular, 

sensors based on the IoT were installed on-site to 

measure the temperature of the PV rear surface 

(thermocouples), solar irradiance (pyranometers), 

ambient temperature, relative humidity 

(environmental sensors), and wind speed 

(anemometers). To make these measurements more 

robust and consistent, meteorological and irradiance 

data were obtained from the Malaysia Meteorological 

Department (MetMalaysia) and the National 

Renewable Energy Laboratory (NREL) Solar 

Radiation Database to guarantee continuity and 

consistency of the data.  

      The proposed framework relies on instantaneous 

sources of environmental information, equations for 

measuring panel performance, and cooling system 

parameters to estimate the best cooling strategy. The 

DL model can be adjusted to changes in season and 

long-term degradation factors using historical data and 

lifelong learning. Simulation and field testing of an 

existing Indian pilot system using a solar plant will 

determine the efficacy of the system by comparing the 

energy and level of cooling execution of the system 

with conventional methods [3], [4]. 

      The proposed structure is an integrated approach 

to optimizing the cooling options of solar panels 

owing to the inclusion of multiple databases and 

advanced machine learning algorithms. These are the 

environmental parameters that are averaged with the 

performance parameters of the panel, which include 

the power output of the panel, its efficiency, and heat 

distribution over the panel surface. In addition, the 

parameters of the cooling system (coolant flow rate, 

temperature, and patterns) were introduced into the 

framework [5]. These data are complex and are 

integrated to gain comprehensive insights into the 

dynamics of solar panel systems under different 

circumstances. 

     The deep learning (DL) model is the core of the 

framework for inputting these complicated data and 

predicting the most desirable cooling apparatuses that 

would boost energy production with the least amount 

of energy used for cooling. The model relies on 

previous information on seasons and weather 

conditions to build a complex model of the effect of 

environmental factors on panel performance and 

cooling demand [6], [7]. To prove the efficiency of this 

innovative method, a thorough evaluation plan should 

be developed. Initial testing will be carried out at the 

level of a simple computer simulation, which will 

allow a faster cycle of the model and optimize it in 

terms of a high number of potentially possible 

contingencies. Simulations are important for 

providing significant data on the potential usefulness 

of adaptive cooling systems compared to traditional 

and fixed cooling systems [8], [9], [10]. 

1. Literature Review  
 

1.1 Passive Cooling Systems 

       Passive cooling technologies do not employ 

powered means but instead rely on the natural 

dissipation of heat. PCMs, finned heat sinks, and a 

more active convection surface that cools the PV 

panels. Al-Waeli et al. (2021) note that PCMs would 

cool a panel by 4-6°C, which allows energy production 

to exceed requirements under high-temperature 

climates. In addition, where appropriate, some studies 

have examined advanced surface coatings and nano-

coatings that increase emissivity and thus radiative 

heat loss, which cools at night. While these are cheap 

and inexpensive means of cooling, they are not as 

effective in cooling, are susceptible to outside 

elements, and are limited in mobility needed to sustain 

rapid changes in the environment and thus, reduce 

effectiveness across varying climates [11], [12]. 
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1.2 Active Cooling Systems 

      Active cooling approaches use mechanical or 

fluid-based interventions, such as water spraying, 

forced air ventilation, or hybrid air-water systems, to 

actively remove heat from PV panels. Bahaidarah et 

al. (2013) showed that water cooling through the rear 

surface has the potential to raise PV efficiency to 10% 

in places with high levels of irradiance (in other words, 

hot arid areas), and that air cooling through fan-forced 

cooling can reduce the surface heat very quickly, 

especially when there is great irradiance. However, 

they are associated with the requirement of auxiliary 

energy, which can nullify the benefits owing to its 

ineffectiveness. Multiple active hybrid systems have 

been found to perform much better; however, they 

increase the level of complexity, operational cost, and 

maintenance needs, and a further issue is meeting 

cooling perspectives and efficiency with energy costs. 

Hence, intelligent control strategies are necessary. 

[13], [14]. 

1.3 ML in PV Performance Prediction 

      The growing use of machine learning (ML) 

methods to forecast PV performance variables (e.g., 

temperature, power output, and degradation trends) 

based on environmental and operating data has gained 

momentum. Yang et al. (2020) employed Artificial 

Neural Networks to predict PV output with high 

predictive capabilities compared to those who 

employed Support Vector Machines (SVMs) and 

Gradient Boosting to estimate temperature and 

irradiance. Although these models may theoretically 

be able to capture nonlinear dependencies in PV 

performance, they incur large amounts of manual 

feature engineering, are sensitive to training data 

quality problems, and are not generally capable of 

being run in conjunction with real-time control 

systems to manage thermals [15], [16], [28]. 

1.4 DL for Renewable Energy Systems 

     Deep Learning (DL) models, including 

Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, have 

progressed renewable energy analytics by 

automatically extracting features and modeling 

intricate spatial-temporal relationships in big data. 

Hossain et al. (2022) reported the recognition of 

spatial patterns with CNNs and the description of 

changes in sequence in the environment with LSTMs 

to generate more precise predictions related to solar 

irradiance, and power production by PV is used. Even 

after these developments, DL applications in PV 

cooling have not been widely accepted, and most of 

the literature on this topic has focused on predicting 

and not on the application of predictive models in real 

time in adaptive cooling control systems operating 

with respect to local thermodynamics [17], [18], [29], 

[30]. 

1.5 Research Gap 

      While significant progress has been made in PV 

temperature prediction and cooling technologies, 

existing research typically addresses these aspects in 

isolation without combining predictive modeling with 

intelligent real-time control optimization. Few studies 

have implemented deep learning models alongside 

reinforcement learning and other adaptive decision-

making structures, which dynamically select the most 

energy-efficient cooling strategy. In addition, 

solutions to optimize both efficiency increase and 

auxiliary power requirements are absent when 

considering variable and extreme climatic situations 

[19], [20], [21]. The manner in which AI-powered 

cooling might fill this gap, thereby maximizing net 

energy production and placing the overall system on a 

sustainable footing, remains an open question. 

2. Study Area and Dataset Analysis 

2.1 Study Area 

     This study is concerned with the performance and 

cooling optimization of photovoltaic (PV) systems in 

hot and humid climates, specifically in conditions 

close to Kuala Lumpur, Malaysia. The average daily 

temperatures in this area are 27°C to 34°C, with the 

highest solar radiation around 800 W/m and 1000 

W/m at noon. High humidity (70-90%) and strong 

solar energy also affect PV modules and may be good 

examples for the consideration of cooling strategies. 

Moreover, the change in cloud cover and occasional 

rain make it possible to evaluate the flexibility of 

intelligent cooling control systems under rapidly 

changing environmental conditions. 

 

Table 1: Data Source Summary 

Data Type Source Resolution Units Period 

Covered 

PV Surface 

Temperature 

IoT-based 

thermocouples 

(mounted at rear 

surface) 

1 min °C 6 months 

Solar 

Irradiance 

NREL Solar 

Radiation Database 

+ On-site 

pyranometers 

1 min W/m² 6 months 

Ambient 

Temperature 

IoT environmental 

sensors + Malaysia 

Meteorological 

1 min °C 6 months 
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Department 

(MetMalaysia) 

Relative 

Humidity 

IoT environmental 

sensors 

1 min % 6 months 

Wind Speed IoT ultrasonic 

anemometers 

1 min m/s 6 months 

Energy 

Output 

PV inverter log 

data 

1 min kWh 6 months 

2.2 Data Description and Preprocessing 

     The dataset comprises six months of continuous 

monitoring data collected from IoT-based field 

sensors and public meteorological archives. The 

features obtained were PV surface temperature, 

ambient parameters (temperature, humidity, and wind 

speed), and operating parameters (irradiance and 

energy output). Field sensor data were collocated with 

weather station data so that the data were aligned in 

time [22], [23], [24]. 

2.2.2 Missing Data Handling 

      Missing data points were sometimes caused by 

sensor failure, network and transmission errors, and 

maintenance. The percentage of records with missing 

values was approximately 1.8%. Gaps in short 

intervals (less than 5 min) were interpolated with 

linear regression, whereas gaps in long intervals (more 

than 5 min) were imputed with a K-nearest neighbors 

imputation algorithm (k=5) based on the features of 

space and time (i.e., irradiance and ambient 

temperature) correlated across space and time [25]. 

2.2.3 Data Transformation and Encoding 

     Prior to feeding the dataset to the deep learning 

models, various transformation and encoding 

processes were applied to enhance the learning 

effectiveness and compatibility of the data to fit the 

neural network structures. The continuous variables of 

irradiance, temperature, humidity, wind speed, and 

energy output were standardized using the Z-score to 

give their distributions a mean of zero and unit 

variance. 

𝑍 =
X − μ 

σ
       (1) 

      This standardization was preferred to min-max 

scaling to make the method more resistant to outliers 

and seasonal changes in environmental variables. 

Variables with high skewness, such as energy output, 

were log-transformed to decrease the variance and 

increase the symmetry of the distributions. 

      Additionally, categorical features, such as cooling 

mode labels at the supervised training stages, were 

encoded to one-hot representation to avoid creating 

relationship annotations with omnipresent ordinality. 

     This process of normalization, transformation, and 

encoding not only scaled the dataset uniformly but 

also preserved the temporal patterns and provided 

semantic consistency between features, allowing the 

deep learning models to achieve convergence faster 

and thus improve generalization to novel 

environmental conditions. 

3. Proposed Methodology 

3.1 System Architecture 

    This section presents the AI-based photovoltaic 

cooling optimization system that works through the 

integration of outside conditions in real time, 

temperature prediction, and reinforcement learning–

based real-time adjustments to maintain photovoltaic 

function at optimal levels with minimal supplemental 

cooling energy consumption. 

      The system architecture operates on four 

functional layers, ensuring a structured and modular 

approach from data acquisition to smart cooling 

actuation. The four functional layers are (i) Data 

Acquisition, (ii) Data Processing and Storage, (iii) 

Prediction and Optimization, and (iv) Control and 

Actuation. A feedback control loop from the final 

layer to the storage element ensures a cumulative 

learning performance. 

. 
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Figure (1): Architecture of the proposed CNN–

RL-based photovoltaic cooling control system. 

    Layer 1 Data Acquisition: The data acquisition layer 

consists of real-time and historical data necessary for 

temperature prediction and cooling management. IoT-

based sensors are installed on-site to obtain relevant 

environmental data in real time, collecting PV rear-

surface temperature (thermocouples), solar irradiance 

(pyranometers), ambient temperature and relative 

humidity (environmental sensors), and wind speed 

(anemometers). All features were evaluated at a fine 

temporal resolution (1 min) to appropriately capture 

immediate changes in the environment. 

     In addition, further meteorological and irradiance 

data (off-site) were collected and integrated from 

trustworthy sources, such as the Malaysia 

Meteorological Department (MetMalaysia) and the 

National Renewable Energy Laboratory (NREL) Solar 

Radiation Database. These two databases have large-

scale networks of gauge stations that complement 

localized IoT sensors. Such integration increases 

robustness, maintains data consistency in the case of 

sensor failures, and ultimately provides better 

learnable generalizability. 

     Layer 2 Data Processing: The second layer consists 

of processed, aligned, and stored acquisition data. This 

increases the integrity through the optimal correction 

of sensor results, where feasible. First, readings are 

aligned to be noise-free through outlier rejection. 

Subsequently, dropout issues from faulted sensors or 

communication failure are mitigated by hybridizing 

short-term gaps between similar values that are 

interpolated, while larger gaps are compensated for by 

K-nearest neighbors’ imputation. 

Second, all features were normalized through z-score 

standardization to ensure numeric stability for model 

training. Thereafter, the processed data are stored on a 

local server for time-sensitive prediction/control 

modules and redundantly backed up to the cloud for 

periodic synchronization. Long-term storage is 

required to support offline analysis and long-term 

archiving/retraining of deep learning and 

reinforcement learning models. 

     Layer 3 Prediction and Optimization: The 

prediction and optimization layer is the central 

intelligent part of the proposed solution for deep 

learning-based temperature prediction and 

reinforcement learning-based decision-making, which 

can provide anticipatory and energy-conscious 

cooling-management. 

      For example, in a convolutional neural network 

(CNN), systematic short-term prediction is made 

based on prior environmental states and operational 

conditions. By predicting thermal phenomena in the 

near future, CNN control can be implemented before a 

problem occurs, instead of responding after. 

      Thus, the predicted temperature value with the 

concurrent system state (current environmental data, 

PV operational conditions, and cooling status) was 

input into the reinforcement learning (RL) agent. The 

RL agent applies a state/action perspective to cooling 

management, which is transformed into a sequential 

decision-making problem. An action refers to a 

specific cooling mode (i.e., passive cooling, low-speed 

fan, high-speed fan, or water spraying). This means 

that every positive 1 maximizes the net energy gain by 

increasing the PV efficiency and compensating for the 

auxiliary cooling energy costs. 

     Layer 4 Control and Actuation: The control and 

actuation layer necessitates action based on the RL 

agent-optimized results. Depending on the cooling 

strategy executed, the actuators will be instructed to 

use variable-speed fans, solenoid valves for water 

spraying, or passive cooling if active cooling is not 

warranted. 

      This means that cooling will occur in real time 

with low latency; no cooling will be overly aggressive 

if cooled sufficiently, and no auxiliary energy will be 

wasted. Fan speeds can be reduced, and the speed and 

duty cycles of water spraying can be reduced, allowing 

this to run as seamlessly as possible to maintain the PV 

temperature within optimal ranges for performance. 

3.2 Feedback Loop and Continuous Learning 

        The feedback loop between the control and 

actuation layer and the data processing and storing 
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layer is shown in Figure 1. At the end of each control 

action, additional measurements of the thermal and 

electrical response of the PV system are taken by the 

necessary sensors for acquisition and storage. 

Thus, the system not only runs according to pre-

trained deep learning models, but it also sustains 

performance over time as users can monitor 

effectiveness and reschedule and retrain the CNN and 

RL models periodically. Thus, the design is responsive 

to seasons, long-term PV system degradation, and 

evolving environmental conditions over time, 

ensuring performance when deployed in the field for 

extended periods. 

4. Experimental Setup 

An experimental system was used to confirm the 

functionality of the proposed deep-learning cooling 

framework in a realistic operational and 

environmental setup. The test procedures included 

model training with historical data offline and testing 

with real-time experimentation via IoT-based 

monitoring systems to assess adaptability and 

robustness. 

4.1 Dataset 

The study area, comprising six months of high-

resolution data on the location of the IoT sensors 

(Kuala Lumpur, Malaysia), along with historical 

weather data (NREL Solar Radiation Database), were 

merged to create the dataset used in developing the 

model. The measured parameters were PV surface 

temperature, solar irradiance, ambient temperature, 

relative humidity, wind speed, and energy production 

at 1 min intervals. To consider seasonal variability, 

clear-sky and cloudy-day conditions, as well as rainy-

day conditions that are characteristic of tropical 

climates, were included in the dataset [26], [27]. 

4.2 Evaluation Metrics 

The effectiveness of the intended system was validated 

based on the prediction accuracy and performance for 

cooling optimization. For CNN-based prediction, 

performance will be validated based on the Root Mean 

Square Error (RMSE) of the numerical result through 

which the exact PV temperature differs from the 

predicted PV temperatures; Mean Absolute Error 

(MAE) the prediction performance in general; the 

coefficient of determination (R²) the percentage of 

variance explained by the method; for reinforcement 

learning–based cooling optimization, performance 

will be validated based on the expected control 

effectiveness gains (PV electrical efficiency 

improvement percentage based on kWh/HW produced 

in comparison to the same conditions without 

cooling), cooling energy savings (how much auxiliary 

energy consumption has been reduced compared to 

active cooling that was fixed), or net energy gain 

(kWh) how many usable KWh output increases. 

4.3 Baseline Models 

To establish a comparative benchmark, the proposed 

CNN+RL framework was evaluated against several 

baseline approaches: 

• Passive Only Kooling: Natural convection with a 

finned heat sink and no active elements. 

• Fixed Active Cooling - Fans run at full speed all 

the time, irrespective of weather conditions. 

• Machine Learning Prediction + Manual Control 

ANN-based temperature prediction using fixed 

cooling rules. 

• Reinforcement Learning Without CNN 

Forecasting RL-based control is based on the current 

readings alone and not on future projections. 

• They also enable tangible comparisons of the 

benefits of integrating predictive modeling and 

adaptive decision-making on a single platform. 

Figure 2 is a chart in which the performance of the 

proposed CNN+RL framework is compared with that 

of the state-of-the-art models, with the parameter of 

Efficiency Gain (%) on the primary axis and the 

parameter of Cooling Energy Reduction (%) on the 

secondary axis. The findings indicate that passive 

cooling or fixed active cooling have moderate 

performance in terms of efficiency gains but are either 

not flexible or consume a lot of energy. All alternative 

combinations never reached the efficiency 

improvement rates of CNN+RL (12.6%) and saved 

cooling energy use of 18 percent. 

 

Figure (2): Performance Comparison of Models 

5. Results and Discussion 

5.1 Prediction Performance 

      The CNN model performed excellently on PV 

surface temperature prediction because it produced 

much lower errors than the ANN and SVM base 
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models. Short-term predictive temperature enabled the 

RL controller to make active cooling choices in 

advance, which prevented excessive switching of the 

active cooling system. 

Table 2: Temperature Prediction Performance 

Model RMSE 

(°C) 

MAE 

(°C) 

R² 

Score 

ANN 2.48 1.96 0.89 

SVM 2.74 2.12 0.87 

CNN 

(Proposed) 

1.38 1.04 0.95 

5.2 Cooling Efficiency and Energy Savings 

      By combining CNN-based predictive control with 

RL-based control, the dynamic adaptation of cooling 

strategies was implemented based on the predicted 

thermal conditions. This provided the greatest 

efficiency improvement and the greatest decrease in 

auxiliary cooling energy consumption of all methods 

tested. 

Table 3: Cooling Performance Comparison 

Method Avg. 

Efficiency 

Gain (%) 

Cooling 

Energy 

Reduction 

(%) 

Net 

Energy 

Gain 

(kWh) 

Passive 

Cooling 

3.1 N/A 5.4 

Fixed Active 

Cooling 

10.2 0 17.6 

ML + 

Manual 

Control 

8.4 5.0 15.1 

RL Only 9.7 12.0 19.4 

Proposed 

CNN+RL 

12.6 18.0 23.9 

 

Figure (3): Net Energy Gain for Different Cooling 

Methods 

5.3 Statistical Analysis of Results 

      To confirm the performance gain attained owing to 

the proposed deep-learning-based cooling system, a 

statistical analysis was performed to compare the No 

Cooling, Passive Cooling, and the Proposed DL 

Cooling methods. Paired t-tests and ANOVA were 

employed in the analysis to establish whether the 

observed improvements in efficiency and temperature 

reduction were statistically significant. 

Table 4: Statistical Summary of Cooling 

Performance 

Comparison Mean 

Temp 

(°C) 

Mean 

Efficiency 

(%) 

p-value 

(Temp) 

p-value 

(Efficiency) 

No Cooling 

vs Passive 

45.2 

vs 

42.1 

85.5 vs 

86.9 

<0.05 <0.05 

No Cooling 

vs Proposed 

DL 

45.2 

vs 

39.0 

85.5 vs 

88.4 

<0.01 <0.01 

Passive vs 

Proposed 

DL 

42.1 

vs 

39.0 

86.9 vs 

88.4 

<0.05 <0.05 

 

Figure (4): Effciency Gain vs Cooling Energy 

Resuction 

    The results indicate that the proposed DL cooling 

system significantly outperforms both the no cooling 

and passive cooling approaches in cooling the PV 

panel temperature and increasing efficiency, and the 

activation of these factors is statistically important at 

the 95th confidence level. 

5.4 Comparative Visualization 

Figure 5 shows a composite bar chart of the efficiency 

gain as a function of the cooling energy reduced for all 
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the models tested. It remains evident that the proposed 

CNN+RL solution results in improved performance 

over all baselines and dismisses adaptive control and 

predictive foresight as significant for the optimization 

of PV cooling systems. 

 

Figure 5: Simulated PV panel temperature 

profiles for different cooling methods. 

Discussion 

 

     The experimental results support the statement that 

predictive modeling leads to a substantial increase in 

the effectiveness of cooling controls. By predicting the 

trends in PV surface temperature with the CNN model 

and therefore correctly predicting when active cooling 

was required, the RL agent could reduce auxiliary 

energy inputs while maintaining a compromise on 

thermal performance. 

     Real-time data of the environment is constantly 

collected and analyzed; it includes ambient 

temperature, humidity, solar irradiance, and wind 

speed. They are the environmental parameters 

averaged with the performance parameters of the panel 

that cover aspects such as the panel power output, the 

efficiency and even the heat distribution across the 

panel surface. Also, cooling system parameters such 

as coolant flow rate, temperature, and patterns are 

added to the framework [5]. 

   A notable observation is that RL without CNN 

forecasting did outperform the manual ML control, but 

it is nonetheless worse than CNN+RL, demonstrating 

the relevance of jointly predicting and optimizing 

within a framework. 

 

Conclusion 

     This study proposed and validated a deep learning 

model to develop and test a novel methodology that 

can be used for modeling and optimal control of PV 

system cooling by coupling Convolutional Neural 

Networks (CNN) to predict the temperatures and 

Reinforcement Learning (RL) to achieve intelligent 

cooling control. The system used real-time IoT sensor 

measurements to estimate thermodynamics and 

dynamically select the most energy-efficient cooling 

plan. The increase in PV efficiency and decrease in 

cooling energy consumption, measured in all these 

experiments, showed a 12.6% increase in efficiency 

and 18% decrease in cooling power usage, which is 

superior to all the baseline approaches implemented as 

passive cooling, fixed active cooling, and non-

prediction RL control. 
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