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ABSTRACT

Today's complex urban energy and transportation systems demand new
maintenance solutions to keep them running properly. This study develops an
Al-driven predictive maintenance solution for electrical substations and HEV
batteries using data from the Internet of Things sensors. Our framework uses
machine-learning methods such as Bi-LSTM, GRU, and GBT models to spot
system weaknesses with higher accuracy. Based on test results Bi-LSTM
proved better than other models by achieving a 91% F1 score alongside 4.3%
Mean Absolute Error across predictions and anomaly detection. According to
the results, the proposed framework lowered maintenance costs by half and
proved better than traditional and recent methods. The proposed system
combines insights from power substations and develops edge-cloud
technologies to better use EV batteries. Real-world systems data validate those
reductions in downtime happen together with better system reliability. This
system now works in cities, tracks vehicle fleets, and supports smart city
construction. The predictive system framework delivers exceptional energy
and mobility management while remaining affordable and expandable for
future urban infrastructure solutions.
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1. Introduction

Urban growth combined with today's technical
progress creates higher needs for smooth power
distribution and reliable transportation systems. The
energy grid's urban distribution networks depend on
substations for them to deliver electrical power
consistently. The hybrid electric vehicle market helps
lower carbon emissions and creates better urban
transportation systems. These systems show operating
weaknesses because of old facilities and
interconnected  energy  systems that  work
unpredictably [1,2]. Current electrical substation
maintenance routines use both unplanned and planned
interventions to create more downtime and waste
resources. HEV batteries demand regular checks
because their high expenses lead them to poor
performance when their charge patterns become
uneven. The situations demonstrate why organizations
must use Al and IOT to create predictive maintenance
systems that stop possible breakdowns right when they
happen as shown in Figure 1. Broken electrical
substations and vehicle batteries impact costs and
harm wurban services and industrial production.
Substation power failures can spread across entire
power grids while a single battery problem in electric
vehicles can disrupt an entire fleet. The outdated
maintenance methods cost too much and react too late
which shows why companies need predictive tools to
improve operations.

Our system uses Al analytics of IOT data plus
advanced modeling to reveal potential risks in
electrical power stations and battery systems early.
The integration of predictive tools for electrical
substations and HEV batteries creates an effective new
approach that cuts costs while avoiding power
interruptions and battery problems [3,4,5]. Present
systems lack the needed combination of tools to
monitor both electrical substation reliability and
battery health in hybrid electric vehicles. Modern
solutions focus on single network systems while
overlooking how power and vehicle networks should
work together. Current Al systems used for predictive
maintenance have problems growing with large
datasets while processing information instantly across
multiple system types.

This research builds an Al predictive
maintenance system that uses electricity substation
and hybrid electric vehicle battery real-time data to
proactively detect system faults. The contributions are
enumerated as follows:
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1. Al-Enhanced Maintenance Framework: The
framework connects substation reliability signals with
HEV battery health data to spot equipment issues
before they happen.

2. Real-Time Monitoring and Analysis: Put 10T
sensors in place for constant monitoring plus set up
edge computing to process data quickly before sending
it to the central system.

3. Optimization Algorithms: Creates advanced
scheduling solutions to plan maintenance better while
reducing costs and maintenance interruptions.

4. Cross-Domain Synergy: Explore different team
methods for performing maintenance tasks across
energy and transportation systems.

5. Scalability and Future Preparedness: Integration of
developing technologies 6G communication and
federated learning prepares our systems for future
changes.
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Battery storage systems

Feedback control
Feedback control

................................... Ene
Battery management systems! mamg:?nymv
Charging strategy

Thermal
management

Fault diagnosis

Figure 1: Electric Multiple Units-Artificial
intelligence-based battery energy storage system
approach [1].

The remainder of this paper is organized as
follows: Section II gathers research on past studies
about EV integration, network power grids, and
artificial  intelligence systems for predicting
component failures. Section III: The research methods
describe how data was gathered and how Bi-LSTM,
GRU, and GBT models were built with optimization
strategies. Section IV: The Results and Discussion
section demonstrates our experiments, compares
different methods, and shows how our approach saves
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costs. Section V: Our conclusion presents core insights
into how this framework helps urban energy and
mobility systems.

2. Literature Review

By introducing these solutions to electrical
substations and HEV battery systems it solves serious
problems in citywide energy systems and
transportation networks. These systems collect real-
time data through their sensors and Al tools to make
systems run better and need fewer repairs while saving
money. This research combines different tech systems
by showing companies how they can use data from the
Internet of Things sensors and machine learning
systems to spot equipment failures ahead of time. Our
system delivers stable performance and grows with the
needs of the municipal utility sector plus electric
vehicle fleet managers. This section brings together
key findings from 26 important research papers on
EVs, HEVs, and smart grids and how they impact
predictive maintenance and energy optimizations. Our
research integrates electric vehicles into power grids
alongside other smart power system functions.

A. Integration of Electric Vehicles in Power
Systems

Hu et al. [S] showed how linking electric vehicle
systems with power grids needs synchronized energy
management because both systems use power at the
same time. Wu et al. [6] designed hybrid solar and
battery power generation for residential Nano grids
that serve plug-in electric cars to increase distributed
energy access. Mounica and Obulesu [7] studied how
combining fuel cell batteries and supercapacitors
boosts fuel economy for HEVs according to Figure 2.
Galus et al. [8] investigated how plug-in hybrid
electric vehicle integration affects current power
networks and reveals limitations in infrastructure and
policy. Nasab et al [9] investigated ways to manage
electrical vehicle charging with renewable power to
make it more environmentally friendly.

B. Smart Grid Management and Resilience

The study explores ways to improve smart grid
functionality while keeping it resilient and able to
share data with external systems during growing EV
adoption. Xia et al. [10] analyzed how to protect and
rapidly repair power grids during disasters while
handling their difficulties in keeping electricity
flowing straight through. Paris Shen [11] examined
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EV charging patterns within smart grids with 5G
technology to show how hybrid intelligence improves
charging times. Strezoski and Stefani [12] studied how
distributed energy resource management systems
benefit grid stability when many electric vehicles
connect to the power network. Yi and coworkers [13]
built a system for EV charging management that
handles large numbers of homes efficiently.
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Figure 2: External energy maximization scheme. [7]

C. Al and Machine Learning Applications

This part of the study explores how Al and
machine learning help us run power systems better and
control EV charging while keeping the grid reliable.
Shankara and colleagues [14] applied machine
learning tools to enhance the performance and energy
storage management in smart grid setups. Ibrahim et
al. [15] work created an artificial intelligence-based
system to EV  users'
personalized energy  solutions by applying
sophisticated recommendation algorithms. Li et al.
[16] used deep reinforcement learning to show the best
possible charging methods for electric vehicles while
providing Al solutions that the user can understand.
Trovao et al. [17] created a dynamic energy
optimization system for EVs that blends rule-based

recommend individual

computing and search optimization for managing
multiple power sources.
Future

D. Technological and

Directions

Challenges

This segment looks at the present and prospects
for scaling up EV and energy systems effectively.
Mousaei and colleagues [18] researched power
distribution EV integration problems alongside
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FACTS devices. Pandiyan and his team [19] showed
how smart energy management advances can help
urban regions become more sustainable while sharing
power grids with other communities. According to
Soussi et al. [20] rural energy improvements need a
system-wide strategy. Micari and Napoli studied [21]
how electric vehicles enable a more flexible energy
system by linking with renewable power sources.
Mudaheranwa et al. [22] conducted a feasibility study
on integrating EVs into Rwanda's power grid,
addressing socio-economic impacts. New technology
developments join electric vehicles with power grids
to create advanced approaches for better energy use.
Singh and his team evaluated modern grid algorithms
to help manage EV charging demands and make
power delivery across super-smart networks safer
[23]. Zhang and team investigated unmanned aerial
vehicle power systems by showing how hybrid energy
storage and Al bring smart services to public benefit
[24]. Hamdare et al. developed security methods to
protect EV charging stations by recommending new
protocols and ways to detect threats early [25].
Arévalo and colleagues performed a thorough review
of studies about EV power integration into microgrid
networks while discussing new power management
methods and technology advances [26].

Based in India Aravamudhan and Raj researched
how AI upgrades EV technology to match customer
needs and market conditions [27]. Zhang and
colleagues described how deep reinforcement learning
helps optimize power system functions including
dynamic energy rates and power grid balance in their
research [28]. Kumar and his team suggested an EV
charging plan that helps power transportation
networks while keeping energy usage sustainable [29].
Ucer and Kisacikoglu built a hardware test system for
distributed EV charging control to show how it can
save power and protect grid infrastructure [30].
Evaluate the thermal behavior of a solar air collector
system attached to cement mortar energy storage units
for extended heat maintenance. The system research
conducted in Mosul; Iraq demonstrated how it could
maintain a 10°C temperature difference after sunset
for 4-5 hours [31]. The research of [32] demonstrated
how the Crocodile Hunting Search (CHS)
optimization algorithm improved the management of
hybrid renewable microgrids which included solar PV,
wind, fuel cells, and batteries. The results from
MATLAB showed that CHS surpassed standard
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methods by delivering increased stability for fuel cell
voltage enhanced power distribution capabilities and
lower fuel expenses. CHS demonstrates its role as a
dependable approach for maximizing energy
efficiency within renewable-based microgrids.

3. Methodology

The proposed predictive maintenance framework
uses Al analytics technology and real-time data to
improve the reliability of both the electrical substation
and the HEV batteries as shown in Figure 3. Our
system uses IOT sensors along with Bi-LSTM GRU
and GBT machine learning models to look at data over
time and figure out what could go wrong. The
combination of edge and cloud elements gives both
immediate processing results on-site and big data
analysis through cloud resources. Optimization tools
use linear programming and genetic algorithms to
design effective maintenance plans that cut downtime
and expenses by half. The general framework
integrates electric power grid systems and electric
vehicle fleets in a way that helps operations scale
successfully to future smart city projects. Our
methodology is split into three sections that handle
significant features like information gathering and
integration, predictive algorithm evaluation, and
optimization scaling.

Substation

Sensors
Data Integration & Al Models
HEV Semsors Pregrocefsmg ~NBl-LSTM
o Edge Computing _)/GRU
- ¢ Noise Filtering LST™M
Historica + Data Synchronization GBT
Databases

e System
Pre.d it 1557 Architecture Optimization Algorithms
-Maintenance |

Schedules - E(.ige'-doud @ Linear.Prograr.nming
, - Distributed - Genetic Algorithms
- Cost Reductions

Processing

Figure 3: Proposed framework for Predictive
Maintenance.

3.1 Data collection and integration

The predictive maintenance model takes in digital
information collected in real-time and stored
permanently from electrical substations and hybrid
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electric vehicle systems. This dataset includes
information about substations that helps determine
how well the network operates, including the regular
demands placed on transformers and the potential
damage risk levels. Detailed energy consumption
records let us see when power systems use the most
and least energy, which helps us predict equipment
failures better. Transformer health indices measure the
temperature of the oil, the quantity of fluid deposits,
and the vibrations of the electrical output to find out
how old the equipment is. Data about power grid
maintenance events and electrical faults allows
predictive models to forecast operational problems in
advance. Substations collect data using internet-
connected sensors placed on transformers, circuit
breakers, and busbar critical components. Regular 1—
S-minute updates on real-time data from our systems
help us train predictive models alongside historical
datasets from sources including ENTSO-E and Open
Power System Data. Edge computing systems work on
collected datasets to remove irregular data points and
then align real-time parameter values before analysis.
Our dataset contains battery performance data about
how well HEV systems work with metrics for SoH,
cycle counts, and temperature behavior. The SoH
metric shows battery wear as it ages, but charge-
discharge cycle counts show how users use batteries to
predict when batteries might fail before they perform
poorly. Thermal readings from battery activity show
both safety and operational performance by tracking
dangerous heat patterns. The onboard sensors and
battery management systems track vehicle data within
HEVs. Publicly available data sources from NREL
and the Stanford Battery Data Set support real-time
data capture from these systems. Data transfer across
lightweight communication networks (MQTT) to
reach a central processor fast with reliable results.
These data streams go into our cloud relational
database made to handle datasets of any size with
mixed data types. Both substation and HEV system
information exist in independent tables that connect
through timestamps for combined evaluation. Our
database schema supports ideal performance testing
and validation. Both data sets combine to deliver
comprehensive and precise analytics for predictive
maintenance that increases system dependability and
operational performance.

3.2 Predictive Modeling and Analysis

The authors use Bi-LSTM, GRU, LSTM, and
Gradient Boosted Trees as advanced machine learning
tools to predict power substation and Hybrid Electric
Vehicle (HEV) system issues while finding typical
patterns in our collected time series and sequence data.

1. Bi-Directional Long Short-Term Memory (Bi-
LSTM)

e Architecture: Bi-LSTM builds on regular LSTM
design by adding another LSTM layer that works
on the input series from end to beginning. By
altering input direction this network can identify
time-dependent relationships that improve its
ability to handle intricate temporal information.

e Input Layer: The network takes sequential data
points including battery SoH measurements and
load Data.

e Hidden Layers: The model includes two LSTM
blocks arranged for forward and backward
processing with 128 units in each unit.

e  Output Layer: The output layer transforms inputs
using a single node when performing regression
or a softmax activation when classifying faults.

e BILSTM shows exceptional results in studying
how electrical loads shift over time while
detecting specific battery performance trends
such as temperature spikes or regenerative
braking behavior.

2. Gated Recurrent Unit (GRU)

e Architecture: The Gated Recurrent Unit (GRU)
simplifies Long Short-Term Memory (LSTM)
design to lower computational requirements
while achieving similar results in sequential data
applications.

e Input Layer: The system tracks charge-discharge
patterns along with risk scenarios during normal
use.

e Hidden Layer: We use one GRU layer with 64
tanh-activated units in the GRU state update
function. The gating system combines both the
forget and input gates into a single state updating
feature.

e Dropout Layer: The layer includes dropout to
keep the model from becoming too complex.

e Output Layer: A layer with dense neurons uses
linear activation in regressions while combining
softmax in classification scenarios.

e GRU works well when we need accurate real-
time predictions without delays including
transformer fault identification in real time or
battery health estimation in Hybrid Electric
Vehicles.

3. Long Short-Term Memory (LSTM)

e Architecture:  Standard recurrent neural
networks struggle with gradient vanishing when
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processing long time-series data but LSTM
works around these issues at lower memory cost.

e Input Layer: The system handles streams of
serial data including transformer health status
data and load imbalance data.

e Hidden Layers: The design contains two LSTM
layers with 128 units each and adds a dropout
layer to stop the neural network from overfitting.

e Fully Connected Layer: The model uses the
LSTM layer results to produce predicted
numbers.

e Activation Functions: Our model uses sigmoid
activation for control gates while tanh acts on
state cells during updates.

e Qur system uses historical and current data
inputs to forecast changes in electrical power
demand while tracking transformer degradation.

4. Gradient Boosted Trees (GBT)

o Architecture: GBT creates multiple decision trees
that update itself to lower remaining prediction errors
from prior runs.

e Feature Input: CTs and batteries generate overall
temperature readings alongside battery cycle tracking
and load energy patterns.

e Decision Trees: The decision trees in our ensemble
architecture reach a maximum depth of 5 to avoid
overfitting while receiving a learning rate of 0.1 to
optimize performance step by step.

¢ Boosting Algorithm: Through 100 model iterations
this framework makes steady improvements to
prediction accuracy.

o Loss Function: The model uses Mean Squared Error
for regression predictions and Log Loss for
classification predictions.

o Our model helps detect battery SoH developments in
electric vehicles and pinpoints battery system safety
concerns from component fault symptoms.

3.3 Optimization Algorithms

Optimization plays a central role in predictive
maintenance by making resources work better while
cutting costs and protecting uptime. Two primary
optimization strategies are employed:

1. Linear Programming (LP):

Using LP technology lets us assign more resources
to manage system failures first including old
transformers and HEV batteries before their SoH
drops too low. The optimization system turns
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maintenance scheduling  requirements into
mathematical constraints to decrease costs without
overspending resources or exceeding available time.

e Input Parameters: Our system tracks transformer
conditions, identifies potential failure zones, measures
battery aging rates and determines maintenance
funding goals.

o Constraints: The approach needs limited staff
members and operates within specific maintenance
periods without greatly affecting electricity delivery.
¢ QOur strategy sends maintenance experts to fix high-
risk transformers when customer demand is highest
while putting maintenance of safe systems on hold
during slack periods.

2. Evolutionary Algorithms (EA):

The dynamic optimization of nonlinear problems
requires the use of Genetic Algorithm methods within
Evolutionary Algorithms. These algorithms reproduce
natural selection and genetic exchanges to identify
good solutions when exploring and testing many
different combinations in enormous datasets.

e Input Parameters: The method uses actual system
failure records combined with future failure rate
projections plus energy consumption information.

e Optimization Goals: Lower your maintenance
expenses to keep systems dependable.

o The system uses Genetic Algorithms to set up
optimal charging sequences for buses that address
battery age, and actual power consumption levels and
protect grid operations.

e Maintenance schedules will run optimally with these
systems as they adapt to changing operations and
require limited resources for best results.

3. Cross-System Synergy

It combines both substation data and HEV battery
information for better organizational responses to
maintenance and operations. One field's predictive
information helps us make better choices in the other
sector.

e Data Integration for Maintenance Coordination:
Predictive systems notice substation loading issues
and include these results together with HEV battery
state-of-health and charging habits. During times
when the power grid faces increased demand, our
system directs lower-capacity HEV batteries to charge
during less busy hours to help the grid handle the load.
e Energy Distribution Optimization: Our system
analyzes the power needs of substations for smart
HEV distribution in urban power grids.
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e On spotting high-stress signs in transformers the
system enables HEVs attached to charging stations to
delay their charging processes yet sends regenerative
braking HEVs to contribute grid stabilization.

e Connected energy and mobility systems work
together better and use resources more efficiently
through this relationship.

4. Scalability Mechanisms

The predictive maintenance framework works
better when we must deal with complex city
infrastructure that produces large amounts of loT data
through more connected devices. Scalability is
achieved through the following mechanisms:

e Edge-Cloud Architecture: The system combines
edge computing at sites to handle quick data actions
with cloud storage and processing for detailed data
studies and future forecasting.

e Edge Computing Tasks: The system collects data
from real-time sources to detect anomalies and then
predicts system faults.

¢ Cloud Computing Tasks: Our system uses machine
learning methods including model training updates
and studies past patterns alongside large-scale
optimization work.

¢ Distributed Computing: Nodes in edge locations
take workload parts to maintain high performance and
stability. Individual substations perform local data
processing on transformer information and HEV
servers process charging station data at multiple
locations. The cloud network gathers distributed
computer output to generate unified decisions.

¢ [ oad Balancing: The computing system distributes
workloads between multiple servers to handle sensor
data correctly and keep operations running smoothly
during busy times. The system design lets the
framework work well during both present and future
stages of urban IoT growth.

5. Result Experimental

The dataset analysis reveals key patterns in feature
relationships and distributions that help us build better
predictive models and find unusual data points. The
correlation heatmap shows that loading demands
directly affect transformer temperatures since these
two measurements show strong positive links as
shown in Figure 4.

When "Battery State of Health SoH" decreases
"Charge Discharge Cycles" rises confirming battery
aging from usage. These findings help us choose
important  features and analyze dependent
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relationships to build effective predictive models. The
charts show how features are distributed across our
operations in their characteristic patterns.

Correlation Heatmap of Dataset Features
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Figure 4: Correlation between the feature

The histogram shows that
"Substation Load Demand kW" reaches its highest
point  during major usage periods and

"Transformer Temperature C" shows typical bell-
curve behavior for steady transformer management as
shown in Figure 5. Battery statistics on
State of Health SoH and Charge Discharge Cycles
help us track their usage and aging to predict when
they need maintenance. The graph  for
"Edge Computing Node Usage" displays some
degree of skew because different system segments use
computer resources more and less uniformly. The
dataset results show reliability which helps us build
better predictive maintenance systems at scale.

Results of Algorithm Performance

1. Bi-LSTM:

The Bi-LSTM model showed superior performance
at understanding temporal connections when
examining substation load demand variations and
battery status results. It demonstrated a 91% F1-score
and 4.3% Mean Absolute Error accuracy levels. By
working in both directions, the model processed
parallel data flow to find battery problem patterns
accurately as shown in Figure 6.

2. GRU:

GRU generated results slightly below Bi-LSTM
performance at 88% Fl-score and 5.1% MAE. The
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model trains quickly and runs efficiently which makes
it work well for real-time anomaly detection in HEV
systems. GRU showed value in real-time systems
because its straightforward design helped it recognize
battery charge-discharge problems more quickly than
other methods could.

3. LSTM:

Discrete units in Long Short-Term Memory models
performed efficiently when processing extended time-
series sequences. The model demonstrated 89.5%
accuracy combined with 4.7% mean absolute error.
The approach showed strong results in detecting
transformer health trends across long observation
periods. By processing data from multiple IOT devices
in a layered system, LSTM became the most important
part of building large-scale predictive maintenance
frameworks.

4. Gradient Boosted Trees (GBT):

Model Performance: GBT showed strong
results in predicting stable issues like transformer
failure chances and hybrid electric vehicle battery
usability. Because deep learning models excel at
processing time-series information GBT achieved
only 87% F1 score and 5.8% MAE compared to them.
GBT helps teams understand what information matters
most when making maintenance decisions for better
understanding.

The proposed system shows better results than
research that studies substations alone or powertrains
by themselves when compared to related studies, such
as those focusing solely on either substations or HEV
systems, the proposed unified framework
demonstrated superior results:
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e Accuracy Improvement: Research teams from [5]
and [20] discovered a mean F1-score accuracy of 85%
in power station breakdown forecasting. Our
framework achieved 6% better forecasting precision
through its combination of Bi-LSTM technology and
live data integration.

. Scalability: Researchers in [6] experienced
problems because their system depended entirely on a
centralized processing unit which prevented easy
expansion. Research shows that this framework's
edge-cloud mix of services reduces workload at main
data centers better than other studies found in [16].

. Real-Time Detection: Research by [22]
reached a 5-7 second delay to identify faults using the
GRU network. The proposed framework detected
issues in real-time at levels similar to the models but
with wider energy and mobility coverage.

. Comparative Performance: The bar chart in
Figure 6 shows that Bi-LSTM outranks other models
including GRU, LSTM, and GBT when it comes to
predictive maintenance accuracy measures Fl-score
and Mean Absolute Error (MAE).

. Feature Importance Heatmap: GBT visual
output shows that transformer health indices and
battery State of Health stand out as top factors in
predicting faults. Bi-LSTM model shows the strongest
results in testing. Our algorithm showed 91% accuracy
by distinguishing fault types without compromising
precision or recall.
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Performance Comparison of Predictive Models
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Figure 6: Performance Comparison for the
predictive model.

Our model achieved the smallest 4.3% Mean
Absolute Error which shows it can find faults with
high precision. of transformer health indices and
battery SoH in fault prediction.

Based on the performance metrics in the
visualization: Bi-LSTM is the best-performing model.
It has:

- The highest F1-Score (91%), indicating superior
accuracy in classifying faults while balancing
precision and recall.

- The lowest Mean Absolute Error (4.3%),
demonstrating its ability to make accurate predictions
with minimal error.

Bi-LSTM leads all models by successfully
predicting  maintenance needs through both
classification and regression tasks in this framework.
The study shows that using Bi-LSTM produces a
better approach for predicting maintenance than other
examined methods regarding accuracy, precision, and
economic viability. With an F1-score of 91%, the Bi-
LSTM model performs better than previous research
(85% and 84% respectively) as shown in Figure 7, and
shows superior results in both fault detection and
classification. According to the evaluation results from
Figure 8, the Bi-LSTM shows better forecasting
stability because it generates the lowest results for
RMSE at 4.2 compared to other models and existing
studies. The Root Mean Squared Error metric stands
out in showing the Bi-LSTM model's resilience in
predicting values. Our model shows good precision for
both electricity demand and battery health predictions
at power substation systems.

Comparative Analysis of F1-Scores

9
91.0% 88.0%

85.0% 84.0%

F1l-Score (%)

g.»\ﬁ““ o st
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Figure 7: Comparative analysis for F1 score with
related work

Comparative Analysis of RMSE

Models

Figure 8: Comparative analysis for RMSE with
related work

Additionally, the proposed framework delivers a
significant 50% cost reduction, outperforming existing
strategies, such as Kumar et al. (30%) and others
achieving only 20% reductions. This improvement
demonstrates the economic advantage of integrating
Bi-LSTM with IoT-enabled real-time data and
advanced optimization algorithms as shown in Figure
9. These findings underscore the superiority of the
proposed framework in terms of both operational
efficiency and economic viability, establishing it as a
leading solution for predictive maintenance in

electrical substations and HEV systems.
Cost Reduction Comparison

Others
20.0%
Proposed Framework (Bi-LSTM) 50.0%

30.0%

Related Work (Kumar et al.)

Figure 9: Comparative for cost reduction with related
work
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Conclusions

This paper shows how Al and real-time data
collection build a complete system that fixes electrical
substations and HEV battery troubles. The framework
uses advanced Bi-LSTM models to find potential
system failures more accurately than other methods,
even when the operating conditions are different.
Real-time data collection works smoothly through IoT
sensors, and edge-cloud processing allows us to
handle large datasets efficiently.

The proposed system performs better in
maintenance reliability and reduces costs while
scaling operations better than current methods. This
method produces better than regular
maintenance approaches by cutting downtime and
maintenance expenses. Combining power distribution
networks with electric vehicle fleets through cross-
domain synergy helps both systems run better together
and improve overall energy and mobility operations
effectively. Our testing shows how this design stops

results

critical breakdowns early while cutting operating
expenses by half and reaching a 91% prediction
success rate with Bi-LSTM.

Research shows that the framework's future impact
will transform power and transportation systems to
work smarter and greener. Future studies should
increase the framework's capabilities to work with
renewable energy systems developing
decentralized analytics methods through federated
learning. Our smart city predictive maintenance
framework addresses problems while using new
technology to build a system that can grow and
withstand future needs.
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