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Today's complex urban energy and transportation systems demand new 

maintenance solutions to keep them running properly. This study develops an 

AI-driven predictive maintenance solution for electrical substations and HEV 

batteries using data from the Internet of Things sensors. Our framework uses 

machine-learning methods such as Bi-LSTM, GRU, and GBT models to spot 

system weaknesses with higher accuracy. Based on test results Bi-LSTM 

proved better than other models by achieving a 91% F1 score alongside 4.3% 

Mean Absolute Error across predictions and anomaly detection. According to 

the results, the proposed framework lowered maintenance costs by half and 

proved better than traditional and recent methods. The proposed system 

combines insights from power substations and develops edge-cloud 

technologies to better use EV batteries. Real-world systems data validate those 

reductions in downtime happen together with better system reliability. This 

system now works in cities, tracks vehicle fleets, and supports smart city 

construction. The predictive system framework delivers exceptional energy 

and mobility management while remaining affordable and expandable for 

future urban infrastructure solutions. 
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1. Introduction 

         Urban growth combined with today's technical 

progress creates higher needs for smooth power 

distribution and reliable transportation systems. The 

energy grid's urban distribution networks depend on 

substations for them to deliver electrical power 

consistently. The hybrid electric vehicle market helps 

lower carbon emissions and creates better urban 

transportation systems. These systems show operating 

weaknesses because of old facilities and 

interconnected energy systems that work 

unpredictably [1,2]. Current electrical substation 

maintenance routines use both unplanned and planned 

interventions to create more downtime and waste 

resources. HEV batteries demand regular checks 

because their high expenses lead them to poor 

performance when their charge patterns become 

uneven. The situations demonstrate why organizations 

must use AI and IOT to create predictive maintenance 

systems that stop possible breakdowns right when they 

happen as shown in Figure 1.  Broken electrical 

substations and vehicle batteries impact costs and 

harm urban services and industrial production. 

Substation power failures can spread across entire 

power grids while a single battery problem in electric 

vehicles can disrupt an entire fleet. The outdated 

maintenance methods cost too much and react too late 

which shows why companies need predictive tools to 

improve operations.  

      Our system uses AI analytics of IOT data plus 

advanced modeling to reveal potential risks in 

electrical power stations and battery systems early. 

The integration of predictive tools for electrical 

substations and HEV batteries creates an effective new 

approach that cuts costs while avoiding power 

interruptions and battery problems [3,4,5].  Present 

systems lack the needed combination of tools to 

monitor both electrical substation reliability and 

battery health in hybrid electric vehicles. Modern 

solutions focus on single network systems while 

overlooking how power and vehicle networks should 

work together. Current AI systems used for predictive 

maintenance have problems growing with large 

datasets while processing information instantly across 

multiple system types.  

        This research builds an AI predictive 

maintenance system that uses electricity substation 

and hybrid electric vehicle battery real-time data to 

proactively detect system faults. The contributions are 

enumerated as follows: 

1. AI-Enhanced Maintenance Framework: The 

framework connects substation reliability signals with 

HEV battery health data to spot equipment issues 

before they happen. 

2. Real-Time Monitoring and Analysis: Put IOT 

sensors in place for constant monitoring plus set up 

edge computing to process data quickly before sending 

it to the central system. 

3. Optimization Algorithms: Creates advanced 

scheduling solutions to plan maintenance better while 

reducing costs and maintenance interruptions. 

4. Cross-Domain Synergy: Explore different team 

methods for performing maintenance tasks across 

energy and transportation systems. 

5. Scalability and Future Preparedness: Integration of 

developing technologies 6G communication and 

federated learning prepares our systems for future 

changes. 

Figure 1: Electric Multiple Units-Artificial 

intelligence-based battery energy storage system 

approach [1]. 

        The remainder of this paper is organized as 

follows: Section II gathers research on past studies 

about EV integration, network power grids, and 

artificial intelligence systems for predicting 

component failures. Section III: The research methods 

describe how data was gathered and how Bi-LSTM, 

GRU, and GBT models were built with optimization 

strategies. Section IV: The Results and Discussion 

section demonstrates our experiments, compares 

different methods, and shows how our approach saves 
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costs. Section V: Our conclusion presents core insights 

into how this framework helps urban energy and 

mobility systems. 

2. Literature Review 

        By introducing these solutions to electrical 

substations and HEV battery systems it solves serious 

problems in citywide energy systems and 

transportation networks. These systems collect real-

time data through their sensors and AI tools to make 

systems run better and need fewer repairs while saving 

money. This research combines different tech systems 

by showing companies how they can use data from the 

Internet of Things sensors and machine learning 

systems to spot equipment failures ahead of time. Our 

system delivers stable performance and grows with the 

needs of the municipal utility sector plus electric 

vehicle fleet managers. This section brings together 

key findings from 26 important research papers on 

EVs, HEVs, and smart grids and how they impact 

predictive maintenance and energy optimizations. Our 

research integrates electric vehicles into power grids 

alongside other smart power system functions. 

 

A. Integration of Electric Vehicles in Power 

Systems 
 

     Hu et al. [5] showed how linking electric vehicle 

systems with power grids needs synchronized energy 

management because both systems use power at the 

same time. Wu et al. [6] designed hybrid solar and 

battery power generation for residential Nano grids 

that serve plug-in electric cars to increase distributed 

energy access. Mounica and Obulesu [7] studied how 

combining fuel cell batteries and supercapacitors 

boosts fuel economy for HEVs according to Figure 2. 

Galus et al. [8] investigated how plug-in hybrid 

electric vehicle integration affects current power 

networks and reveals limitations in infrastructure and 

policy. Nasab et al [9] investigated ways to manage 

electrical vehicle charging with renewable power to 

make it more environmentally friendly. 

 

B. Smart Grid Management and Resilience 

      The study explores ways to improve smart grid 

functionality while keeping it resilient and able to 

share data with external systems during growing EV 

adoption. Xia et al. [10] analyzed how to protect and 

rapidly repair power grids during disasters while 

handling their difficulties in keeping electricity 

flowing straight through. Paris Shen [11] examined 

EV charging patterns within smart grids with 5G 

technology to show how hybrid intelligence improves 

charging times. Strezoski and Stefani [12] studied how 

distributed energy resource management systems 

benefit grid stability when many electric vehicles 

connect to the power network. Yi and coworkers [13] 

built a system for EV charging management that 

handles large numbers of homes efficiently. 

 

Figure 2: External energy maximization scheme. [7] 

 

 

C. AI and Machine Learning Applications 
 

       This part of the study explores how AI and 

machine learning help us run power systems better and 

control EV charging while keeping the grid reliable. 

Shankara and colleagues [14] applied machine 

learning tools to enhance the performance and energy 

storage management in smart grid setups. Ibrahim et 

al. [15] work created an artificial intelligence-based 

system to recommend individual EV users' 

personalized energy solutions by applying 

sophisticated recommendation algorithms. Li et al. 

[16] used deep reinforcement learning to show the best 

possible charging methods for electric vehicles while 

providing AI solutions that the user can understand. 

Trovão et al. [17] created a dynamic energy 

optimization system for EVs that blends rule-based 

computing and search optimization for managing 

multiple power sources. 

 

D. Technological Challenges and Future 

Directions 

       This segment looks at the present and prospects 

for scaling up EV and energy systems effectively. 

Mousaei and colleagues [18] researched power 

distribution EV integration problems alongside 
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FACTS devices. Pandiyan and his team [19] showed 

how smart energy management advances can help 

urban regions become more sustainable while sharing 

power grids with other communities. According to 

Soussi et al. [20] rural energy improvements need a 

system-wide strategy. Micari and Napoli studied [21] 

how electric vehicles enable a more flexible energy 

system by linking with renewable power sources. 

Mudaheranwa et al. [22] conducted a feasibility study 

on integrating EVs into Rwanda's power grid, 

addressing socio-economic impacts. New technology 

developments join electric vehicles with power grids 

to create advanced approaches for better energy use. 

Singh and his team evaluated modern grid algorithms 

to help manage EV charging demands and make 

power delivery across super-smart networks safer 

[23]. Zhang and team investigated unmanned aerial 

vehicle power systems by showing how hybrid energy 

storage and AI bring smart services to public benefit 

[24]. Hamdare et al. developed security methods to 

protect EV charging stations by recommending new 

protocols and ways to detect threats early [25]. 

Arévalo and colleagues performed a thorough review 

of studies about EV power integration into microgrid 

networks while discussing new power management 

methods and technology advances [26]. 
 

     Based in India Aravamudhan and Raj researched 

how AI upgrades EV technology to match customer 

needs and market conditions [27]. Zhang and 

colleagues described how deep reinforcement learning 

helps optimize power system functions including 

dynamic energy rates and power grid balance in their 

research [28]. Kumar and his team suggested an EV 

charging plan that helps power transportation 

networks while keeping energy usage sustainable [29]. 

Ucer and Kisacikoglu built a hardware test system for 

distributed EV charging control to show how it can 

save power and protect grid infrastructure [30]. 

Evaluate the thermal behavior of a solar air collector 

system attached to cement mortar energy storage units 

for extended heat maintenance. The system research 

conducted in Mosul; Iraq demonstrated how it could 

maintain a 10°C temperature difference after sunset 

for 4-5 hours [31].  The research of [32] demonstrated 

how the Crocodile Hunting Search (CHS) 

optimization algorithm improved the management of 

hybrid renewable microgrids which included solar PV, 

wind, fuel cells, and batteries. The results from 

MATLAB showed that CHS surpassed standard 

methods by delivering increased stability for fuel cell 

voltage enhanced power distribution capabilities and 

lower fuel expenses. CHS demonstrates its role as a 

dependable approach for maximizing energy 

efficiency within renewable-based microgrids. 
 

3. Methodology 

       The proposed predictive maintenance framework 

uses AI analytics technology and real-time data to 

improve the reliability of both the electrical substation 

and the HEV batteries as shown in Figure 3. Our 

system uses IOT sensors along with Bi-LSTM GRU 

and GBT machine learning models to look at data over 

time and figure out what could go wrong. The 

combination of edge and cloud elements gives both 

immediate processing results on-site and big data 

analysis through cloud resources. Optimization tools 

use linear programming and genetic algorithms to 

design effective maintenance plans that cut downtime 

and expenses by half. The general framework 

integrates electric power grid systems and electric 

vehicle fleets in a way that helps operations scale 

successfully to future smart city projects. Our 

methodology is split into three sections that handle 

significant features like information gathering and 

integration, predictive algorithm evaluation, and 

optimization scaling. 

 Substation 
Sensors

HEV Sensors- 

Data Integration & 
Preprocessing

• Edge Computing 
• Noise Filtering
• Data Synchronization

AI Models
Bi-LSTM
 GRU
 LSTM
 GBTHistorical 

Databases

Predictive Insights
- Maintenance 
Schedules
- Cost Reductions

System 
Architecture

- Edge-Cloud 
- Distributed 
Processing

Optimization Algorithms
- Linear Programming
- Genetic Algorithms

 

Figure 3: Proposed framework for Predictive 

Maintenance. 

 

3.1 Data collection and integration 

     The predictive maintenance model takes in digital 

information collected in real-time and stored 

permanently from electrical substations and hybrid 
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electric vehicle systems. This dataset includes 

information about substations that helps determine 

how well the network operates, including the regular 

demands placed on transformers and the potential 

damage risk levels. Detailed energy consumption 

records let us see when power systems use the most 

and least energy, which helps us predict equipment 

failures better. Transformer health indices measure the 

temperature of the oil, the quantity of fluid deposits, 

and the vibrations of the electrical output to find out 

how old the equipment is. Data about power grid 

maintenance events and electrical faults allows 

predictive models to forecast operational problems in 

advance. Substations collect data using internet-

connected sensors placed on transformers, circuit 

breakers, and busbar critical components. Regular 1–

5-minute updates on real-time data from our systems 

help us train predictive models alongside historical 

datasets from sources including ENTSO-E and Open 

Power System Data. Edge computing systems work on 

collected datasets to remove irregular data points and 

then align real-time parameter values before analysis. 

Our dataset contains battery performance data about 

how well HEV systems work with metrics for SoH, 

cycle counts, and temperature behavior. The SoH 

metric shows battery wear as it ages, but charge-

discharge cycle counts show how users use batteries to 

predict when batteries might fail before they perform 

poorly. Thermal readings from battery activity show 

both safety and operational performance by tracking 

dangerous heat patterns. The onboard sensors and 

battery management systems track vehicle data within 

HEVs. Publicly available data sources from NREL 

and the Stanford Battery Data Set support real-time 

data capture from these systems. Data transfer across 

lightweight communication networks (MQTT) to 

reach a central processor fast with reliable results. 

These data streams go into our cloud relational 

database made to handle datasets of any size with 

mixed data types. Both substation and HEV system 

information exist in independent tables that connect 

through timestamps for combined evaluation. Our 

database schema supports ideal performance testing 

and validation. Both data sets combine to deliver 

comprehensive and precise analytics for predictive 

maintenance that increases system dependability and 

operational performance. 

 

3.2 Predictive Modeling and Analysis 

      The authors use Bi-LSTM, GRU, LSTM, and 

Gradient Boosted Trees as advanced machine learning 

tools to predict power substation and Hybrid Electric 

Vehicle (HEV) system issues while finding typical 

patterns in our collected time series and sequence data. 

1. Bi-Directional Long Short-Term Memory (Bi-

LSTM) 

• Architecture: Bi-LSTM builds on regular LSTM 

design by adding another LSTM layer that works 

on the input series from end to beginning. By 

altering input direction this network can identify 

time-dependent relationships that improve its 

ability to handle intricate temporal information. 

• Input Layer: The network takes sequential data 

points including battery SoH measurements and 

load Data. 

• Hidden Layers: The model includes two LSTM 

blocks arranged for forward and backward 

processing with 128 units in each unit. 

• Output Layer: The output layer transforms inputs 

using a single node when performing regression 

or a softmax activation when classifying faults. 

• BILSTM shows exceptional results in studying 

how electrical loads shift over time while 

detecting specific battery performance trends 

such as temperature spikes or regenerative 

braking behavior. 

2. Gated Recurrent Unit (GRU) 

• Architecture: The Gated Recurrent Unit (GRU) 

simplifies Long Short-Term Memory (LSTM) 

design to lower computational requirements 

while achieving similar results in sequential data 

applications. 

• Input Layer: The system tracks charge-discharge 

patterns along with risk scenarios during normal 

use. 

• Hidden Layer: We use one GRU layer with 64 

tanh-activated units in the GRU state update 

function. The gating system combines both the 

forget and input gates into a single state updating 

feature. 

• Dropout Layer: The layer includes dropout to 

keep the model from becoming too complex. 

• Output Layer: A layer with dense neurons uses 

linear activation in regressions while combining 

softmax in classification scenarios. 

• GRU works well when we need accurate real-

time predictions without delays including 

transformer fault identification in real time or 

battery health estimation in Hybrid Electric 

Vehicles. 

3. Long Short-Term Memory (LSTM) 

• Architecture: Standard recurrent neural 

networks struggle with gradient vanishing when 
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processing long time-series data but LSTM 

works around these issues at lower memory cost. 

• Input Layer: The system handles streams of 

serial data including transformer health status 

data and load imbalance data. 

• Hidden Layers: The design contains two LSTM 

layers with 128 units each and adds a dropout 

layer to stop the neural network from overfitting. 

• Fully Connected Layer: The model uses the 

LSTM layer results to produce predicted 

numbers. 

• Activation Functions: Our model uses sigmoid 

activation for control gates while tanh acts on 

state cells during updates. 

• Our system uses historical and current data 

inputs to forecast changes in electrical power 

demand while tracking transformer degradation. 

4. Gradient Boosted Trees (GBT) 

• Architecture: GBT creates multiple decision trees 

that update itself to lower remaining prediction errors 

from prior runs. 

• Feature Input: CTs and batteries generate overall 

temperature readings alongside battery cycle tracking 

and load energy patterns. 

• Decision Trees: The decision trees in our ensemble 

architecture reach a maximum depth of 5 to avoid 

overfitting while receiving a learning rate of 0.1 to 

optimize performance step by step. 

• Boosting Algorithm: Through 100 model iterations 

this framework makes steady improvements to 

prediction accuracy. 

• Loss Function: The model uses Mean Squared Error 

for regression predictions and Log Loss for 

classification predictions. 

• Our model helps detect battery SoH developments in 

electric vehicles and pinpoints battery system safety 

concerns from component fault symptoms. 

3.3 Optimization Algorithms 

     Optimization plays a central role in predictive 

maintenance by making resources work better while 

cutting costs and protecting uptime. Two primary 

optimization strategies are employed: 

1. Linear Programming (LP): 

     Using LP technology lets us assign more resources 

to manage system failures first including old 

transformers and HEV batteries before their SoH 

drops too low. The optimization system turns 

maintenance scheduling requirements into 

mathematical constraints to decrease costs without 

overspending resources or exceeding available time. 

• Input Parameters: Our system tracks transformer 

conditions, identifies potential failure zones, measures 

battery aging rates and determines maintenance 

funding goals. 

• Constraints: The approach needs limited staff 

members and operates within specific maintenance 

periods without greatly affecting electricity delivery. 

• Our strategy sends maintenance experts to fix high-

risk transformers when customer demand is highest 

while putting maintenance of safe systems on hold 

during slack periods. 

2. Evolutionary Algorithms (EA): 

    The dynamic optimization of nonlinear problems 

requires the use of Genetic Algorithm methods within 

Evolutionary Algorithms. These algorithms reproduce 

natural selection and genetic exchanges to identify 

good solutions when exploring and testing many 

different combinations in enormous datasets. 

• Input Parameters: The method uses actual system 

failure records combined with future failure rate 

projections plus energy consumption information. 

• Optimization Goals: Lower your maintenance 

expenses to keep systems dependable. 

• The system uses Genetic Algorithms to set up 

optimal charging sequences for buses that address 

battery age, and actual power consumption levels and 

protect grid operations. 

• Maintenance schedules will run optimally with these 

systems as they adapt to changing operations and 

require limited resources for best results. 

3. Cross-System Synergy 

         It combines both substation data and HEV battery 

information for better organizational responses to 

maintenance and operations. One field's predictive 

information helps us make better choices in the other 

sector. 

• Data Integration for Maintenance Coordination: 

Predictive systems notice substation loading issues 

and include these results together with HEV battery 

state-of-health and charging habits. During times 

when the power grid faces increased demand, our 

system directs lower-capacity HEV batteries to charge 

during less busy hours to help the grid handle the load. 

• Energy Distribution Optimization: Our system 

analyzes the power needs of substations for smart 

HEV distribution in urban power grids.  
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• On spotting high-stress signs in transformers the 

system enables HEVs attached to charging stations to 

delay their charging processes yet sends regenerative 

braking HEVs to contribute grid stabilization. 

• Connected energy and mobility systems work 

together better and use resources more efficiently 

through this relationship. 

4. Scalability Mechanisms 

     The predictive maintenance framework works 

better when we must deal with complex city 

infrastructure that produces large amounts of IoT data 

through more connected devices. Scalability is 

achieved through the following mechanisms: 

• Edge-Cloud Architecture: The system combines 

edge computing at sites to handle quick data actions 

with cloud storage and processing for detailed data 

studies and future forecasting. 

• Edge Computing Tasks: The system collects data 

from real-time sources to detect anomalies and then 

predicts system faults. 

• Cloud Computing Tasks: Our system uses machine 

learning methods including model training updates 

and studies past patterns alongside large-scale 

optimization work. 

• Distributed Computing: Nodes in edge locations 

take workload parts to maintain high performance and 

stability. Individual substations perform local data 

processing on transformer information and HEV 

servers process charging station data at multiple 

locations. The cloud network gathers distributed 

computer output to generate unified decisions. 

• Load Balancing: The computing system distributes 

workloads between multiple servers to handle sensor 

data correctly and keep operations running smoothly 

during busy times. The system design lets the 

framework work well during both present and future 

stages of urban IoT growth. 

5. Result Experimental 

     The dataset analysis reveals key patterns in feature 

relationships and distributions that help us build better 

predictive models and find unusual data points. The 

correlation heatmap shows that loading demands 

directly affect transformer temperatures since these 

two measurements show strong positive links as 

shown in Figure 4.  

      When "Battery_State_of_Health_SoH" decreases 

"Charge_Discharge_Cycles" rises confirming battery 

aging from usage. These findings help us choose 

important features and analyze dependent 

relationships to build effective predictive models. The 

charts show how features are distributed across our 

operations in their characteristic patterns. 

 

Figure 4: Correlation between the feature 

 

The histogram shows that 

"Substation_Load_Demand_kW" reaches its highest 

point during major usage periods and 

"Transformer_Temperature_C" shows typical bell-

curve behavior for steady transformer management as 

shown in Figure 5. Battery statistics on 

State_of_Health_SoH and Charge_Discharge_Cycles 

help us track their usage and aging to predict when 

they need maintenance. The graph for 

"Edge_Computing_Node_Usage" displays some 

degree of skew because different system segments use 

computer resources more and less uniformly. The 

dataset results show reliability which helps us build 

better predictive maintenance systems at scale.  

 

Results of Algorithm Performance 

1. Bi-LSTM: 

    The Bi-LSTM model showed superior performance 

at understanding temporal connections when 

examining substation load demand variations and 

battery status results. It demonstrated a 91% F1-score 

and 4.3% Mean Absolute Error accuracy levels. By 

working in both directions, the model processed 

parallel data flow to find battery problem patterns 

accurately as shown in Figure 6. 

2. GRU:    

    GRU generated results slightly below Bi-LSTM 

performance at 88% F1-score and 5.1% MAE. The 
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model trains quickly and runs efficiently which makes 

it work well for real-time anomaly detection in HEV 

systems. GRU showed value in real-time systems 

because its straightforward design helped it recognize 

battery charge-discharge problems more quickly than 

other methods could. 

3. LSTM:  

     Discrete units in Long Short-Term Memory models 

performed efficiently when processing extended time-

series sequences. The model demonstrated 89.5% 

accuracy combined with 4.7% mean absolute error. 

The approach showed strong results in detecting 

transformer health trends across long observation 

periods. By processing data from multiple IOT devices 

in a layered system, LSTM became the most important 

part of building large-scale predictive maintenance 

frameworks. 

4. Gradient Boosted Trees (GBT):  

     Model        Performance: GBT showed strong 

results in predicting stable issues like transformer 

failure chances and hybrid electric vehicle battery 

usability. Because deep learning models excel at 

processing time-series information GBT achieved 

only 87% F1 score and 5.8% MAE compared to them. 

GBT helps teams understand what information matters 

most when making maintenance decisions for better 

understanding. 

      The proposed system shows better results than 

research that studies substations alone or powertrains 

by themselves when compared to related studies, such 

as those focusing solely on either substations or HEV 

systems, the proposed unified framework 

demonstrated superior results: 

 

• Accuracy Improvement: Research teams from [5] 

and [20] discovered a mean F1-score accuracy of 85% 

in power station breakdown forecasting. Our 

framework achieved 6% better forecasting precision 

through its combination of Bi-LSTM technology and 

live data integration. 

• Scalability: Researchers in [6] experienced 

problems because their system depended entirely on a 

centralized processing unit which prevented easy 

expansion. Research shows that this framework's 

edge-cloud mix of services reduces workload at main 

data centers better than other studies found in [16]. 

• Real-Time Detection: Research by [22] 

reached a 5-7 second delay to identify faults using the 

GRU network. The proposed framework detected 

issues in real-time at levels similar to the models but 

with wider energy and mobility coverage. 

• Comparative Performance: The bar chart in 

Figure 6 shows that Bi-LSTM outranks other models 

including GRU, LSTM, and GBT when it comes to 

predictive maintenance accuracy measures F1-score 

and Mean Absolute Error (MAE). 

• Feature Importance Heatmap: GBT visual 

output shows that transformer health indices and 

battery State of Health stand out as top factors in 

predicting faults. Bi-LSTM model shows the strongest 

results in testing. Our algorithm showed 91% accuracy 

by distinguishing fault types without compromising 

precision or recall.  
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Figure 5: Distribution Analysis of Key Predictive Maintenance Features for Electrical Substations and HEV Systems 
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Figure 6: Performance Comparison for the 

predictive model. 

     Our model achieved the smallest 4.3% Mean 

Absolute Error which shows it can find faults with 

high precision. of transformer health indices and 

battery SoH in fault prediction. 

       Based on the performance metrics in the 

visualization: Bi-LSTM is the best-performing model. 

It has: 

- The highest F1-Score (91%), indicating superior 

accuracy in classifying faults while balancing 

precision and recall. 

- The lowest Mean Absolute Error (4.3%), 

demonstrating its ability to make accurate predictions 

with minimal error. 

      Bi-LSTM leads all models by successfully 

predicting maintenance needs through both 

classification and regression tasks in this framework. 

The study shows that using Bi-LSTM produces a 

better approach for predicting maintenance than other 

examined methods regarding accuracy, precision, and 

economic viability. With an F1-score of 91%, the Bi-

LSTM model performs better than previous research 

(85% and 84% respectively) as shown in Figure 7, and 

shows superior results in both fault detection and 

classification. According to the evaluation results from 

Figure 8, the Bi-LSTM shows better forecasting 

stability because it generates the lowest results for 

RMSE at 4.2 compared to other models and existing 

studies. The Root Mean Squared Error metric stands 

out in showing the Bi-LSTM model's resilience in 

predicting values. Our model shows good precision for 

both electricity demand and battery health predictions 

at power substation systems. 

 

Figure 7: Comparative analysis for F1 score with 

related work 

 

Figure 8: Comparative analysis for RMSE with 

related work 

    Additionally, the proposed framework delivers a 

significant 50% cost reduction, outperforming existing 

strategies, such as Kumar et al. (30%) and others 

achieving only 20% reductions. This improvement 

demonstrates the economic advantage of integrating 

Bi-LSTM with IoT-enabled real-time data and 

advanced optimization algorithms as shown in Figure 

9. These findings underscore the superiority of the 

proposed framework in terms of both operational 

efficiency and economic viability, establishing it as a 

leading solution for predictive maintenance in 

electrical substations and HEV systems. 

 

Figure 9: Comparative for cost reduction with related 

work 
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Conclusions 

     This paper shows how AI and real-time data 

collection build a complete system that fixes electrical 

substations and HEV battery troubles. The framework 

uses advanced Bi-LSTM models to find potential 

system failures more accurately than other methods, 

even when the operating conditions are different. 

Real-time data collection works smoothly through IoT 

sensors, and edge-cloud processing allows us to 

handle large datasets efficiently. 

    The proposed system performs better in 

maintenance reliability and reduces costs while 

scaling operations better than current methods. This 

method produces better results than regular 

maintenance approaches by cutting downtime and 

maintenance expenses. Combining power distribution 

networks with electric vehicle fleets through cross-

domain synergy helps both systems run better together 

and improve overall energy and mobility operations 

effectively. Our testing shows how this design stops 

critical breakdowns early while cutting operating 

expenses by half and reaching a 91% prediction 

success rate with Bi-LSTM.  

     Research shows that the framework's future impact 

will transform power and transportation systems to 

work smarter and greener. Future studies should 

increase the framework's capabilities to work with 

renewable energy systems while developing 

decentralized analytics methods through federated 

learning. Our smart city predictive maintenance 

framework addresses problems while using new 

technology to build a system that can grow and 

withstand future needs. 
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