
1

NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

DOI: https://doi.org/10.56286/ntujps.v3i1

A comparative study on the performance of Gray
Wolves Optimization Multi-Free Dynamic Schema

Radhwan Yousif Al-jawadi

1

1. Administrative Technical College/ Northern Technical University, Mosul , Iraq.

Article Informations A B S T R A C T

©2023 NTU JOURNAL OF PURE SCIENCES, NORTHERN TECHNICAL UNIVERSITY. THIS IS AN OPEN ACCESS ARTICLE

UNDER THE CC BY LICENSE: https://creativecommons.org/licenses/by/4.0/

The most difficult step is to create new optimization algorithms and

examine them using test functions. In this work, we present a

comparison study on the performance of Gray Wolves Optimization

(GWO) and Multi-free dynamic schema (MFDS) algorithms. The

(MFDS) algorithm is a sophisticated optimization method created for

solving optimization problems. It contains different operators (dynamic

schema operator, dissimilarity operator, similarity operator and free

dynamic schema operator). Where, The (GWO) is a meta-heuristic

optimization algorithm inspired by the social behavior of grey wolves in

a pack. This study focused on the run time and the number of iterations

to reach the optimal solutions. The sample of this comparison was on ten
functions. The results showed the superiority of an algorithm (MFDS) on

(GWO) algorithm in most test functions, especially at the run time. The

performance of any single-objective optimization algorithm is a tool to

measures the effectiveness of any algorithm for determining out the best

solution for a specific problem.

Received: 7-10- 2023,

Accepted: 10-11-2023,

Published online: 31-03-2024

Corresponding author:
Name: Radhwan Y. Al-jawadi

Affiliation: Northern Technical

University

Email:

radwan.aljawadi@ntu.edu.iq

Key Words:

Optimization,

Gray Wolves Optimization,

Multi-free dynamic schema

algorithm.

.

https://doi.org/10.56286/ntujps.v1i3
https://creativecommons.org/licenses/by/4.0/

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

2

Introduction

Single objective optimization algorithms are computational methods designed to find the best solution to a

specific optimization problem where a single objective or criterion needs to be either maximized or minimized [1].

The applications of optimization algorithms are used in different fields, like as: (an engineering design, financial

portfolio optimization to machine learning, operations research, and data analysis) [2], [3], [4].

The performance of single-objective optimization algorithms is a crucial aspect that measures their effectiveness

in getting the best solution for the problem at hand. The choice of optimization algorithm can significantly impact

the efficiency and quality of the results. Therefore, assessing and comparing the performance of these algorithms is

essential to ensure their suitability for different applications [4].

Benchmarking plays a major role in algorithm comparison and performance evaluation. The purpose of the

benchmarking trials is to identify or estimate the optimal algorithm for resolving practical issues [3], [5].

The core principle of single objective optimization is to explore and search through a solution space, typically

guided by an fitness function. This function returns a numerical value indicating the quality of a given solution. The

optimization algorithm then iteratively refines and explores candidate solutions to approach the optimal or near-

optimal solution for the specified objective [6], [7]. Several optimization algorithms have been developed to address

single objective optimization problems, each with its own strengths and suitability for different types of problems.

Common examples include:

Gradient Descent (GD): A first-order optimization algorithm that iteratively adjusts a solution based on the

gradient of the objective function. It's widely used for smooth and differentiable functions [8], [9].

Genetic Algorithms (GA): Inspired by the principles of natural selection and evolution, genetic algorithms use

genetic operators like mutation and crossover to explore the solution space and find optimal solutions [8], [10].

Particle Swarm Optimization (PSO): PSO mimics the social behavior of birds or particles in a swarm to search for

optimal solutions. It's effective for problems with many local optima [11], [12].

These algorithms differ in their exploration-exploitation trade-offs, convergence speeds, and suitability for

different types of objective functions. The choice of algorithm depends on the specific problem and its

characteristics.

In this paper a comparative study was presented of (GWO) and (MFDS) algorithms. The (GWO) algorithm is a

nature-inspired metaheuristic algorithm that mimics the hunting behavior of gray wolves. GWO's strength lies in its

efficient exploration of solution spaces. However, GWO's applicability might be influenced by factors like

parameter tuning and its adaptability to different optimization challenges [13], [14]. On the other hand, The (MFDS)

algorithm is a complex optimization approach designed to solve optimization problems. It involves a combination of

dynamic schema operators, dissimilarity operators, similarity operators, and a unique use of free dynamic schema

operators with part of population which regenerates randomly new chromosomes in each iteration [15]. This

integration enables it to traverse complex solution spaces. The strengths of the algorithm include its diverse set of

operators, including dynamic scheme operators that promote fast convergence. However, their complexity and

parameter dependence may pose challenges across diverse problem domains. Let's discuss the characteristics of each

algorithm and their differences in Section (3, 4).

Literature review

The study of [3] intends to evaluate the meta-heuristic algorithms performance on the Congress on Evolutionary

Computation (CEC-2021) benchmark problems, considering factors such as convergence speed and solution quality

on different problem types. The authors used binary operators such as bias, shift and rotation to parameterize

objective functions. Also, they illustrate better understanding of the strengths and weaknesses of various single

optimization algorithms such as Differential evolution (DE), Gaining sharing knowledge-based algorithm (GSK),

(GWO), Particle swarm optimization (PSO). The results of [3] provide offering guidance on which algorithms may

be best suited for different problem domains.

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

3

In [16] a comparative study of the Genetic Algorithm (GA) and (PSO) was presented, the authors conclude that

the PSO is quite similar to GA. are evolutionary search methods change from a set of points to another set of points

within an iteration. The GA and PSO are valuable components of evolutionary optimization techniques, their use is

restricted to specific problems due to certain drawbacks. The overall performance can be raised by combining GA

and PSO in order to solve these problems. A combining these two algorithms results combination of benefits of GA

and PSO in real-world applications. Thus, a hybrid GA and PSO algorithms is a promising area for further study.

In [17] the authors have compared GA and Ant Colony Optimization (ACO) on the guitar tab transcription

problem, to convert a song in standard music notation (sheet music) into an alternative notation known as a guitar

tab. The authors found that the results from experiments by using a new dataset of 148 songs show the efficacy of

the ACO approach to gives the best solutions for this task.

A comparison of ACO and PSO algorithms for common problem optimization (distance optimization) was

reported by the authors of [18]. Both methods were used to successfully solve the problem, and their respective

performances were then quantitatively compared. The outcomes of the simulation demonstrate that the newly

created ant colony optimization technique is the more reliable and superior of the two.

In [19] the authors conclude that the field of meta-algorithms, it is well known that analyzing the algorithm's

solution over N trial runs is required to determine performance; one run is insufficient. Subsequently, the algorithm's

performance is examined in terms of efficiency and effectiveness, including a wide range of problem types such as

discrete and continuous problems, as well as single and multiple objectives. The primary focus of the efficiency

measure for single-objective problems is the rate of problem-solving, which encompasses several factors such as

complexity, computational cost, diversity of search operators, convergence rate, and statistical measurements like

ordered alternatives and cumulative distribution. Discrete problems with a single objective fall under a similar area.

Running time is one of the important metrics, particularly for combinatorial problems.

In [20] the authors present “Performance of Six Metaheuristic Algorithms for Multi-Objective Optimization of

Nonlinear Inelastic Steel Trusses”. The work suggests new strategy for solving the steel trusses using direct analysis

by using multi-objective optimization. The overall weight of the structure and its interstory drift or displacements

were two competing goals that had been evaluated by nonlinear inelastic and nonlinear elastic models, respectively,

to determine the limitations related to strength and serviceability load combinations. The six popular meta-heuristic

algorithms were used to solve the developed MOO problem: generalized differential evolution (GDE3), PSO-based

MOO using crowding, mutation, and ε-dominance (OMOPSO), non-dominated sorting genetic algorithm-II (NSGA-

II), NSGA-III, improving the strength Pareto evolutionary algorithm (SPEA2), and multi-objective evolutionary

algorithm based on decomposition (MOEA/D). A planar 10 bar truss, a spatial 72 bar truss, a planar 47 bar power-

line truss, and a planar 113-bar truss bridge were the four truss structures that were examined. A planar 10 bar truss,

a spatial 72 bar truss, a planar 47 bar power-line truss, and a planar 113 bar truss bridge were the four truss

structures that were examined.

The numerical outcomes demonstrated an inverse proportion and nonlinear relationship between the two

objectives. All six algorithms were also effective in locating feasible, optimal solutions. While MOEA/D and

NSGA-II appeared to be more adept at finding anchor points as well as Pareto, no algorithm was shown to perform

better than the others. Additionally more stable and giving a better solution spread was MOEA/D . OMOPSO was

also good at solution spread, but its stability was worse than MOEA/D. NSGA-III was less efficient at finding

anchor points, although it can effectively search for Pareto points [20].

A comparative study is presented in this paper for both GWO and MFDS on performance on 10 test functions.

Characteristics of Grey Wolf Optimization (GWO) algorithm

The GWO is a population-based, nature-inspired optimization technique that uses a leader-follower structure to

mimic the cooperative hunting behavior of grey wolves. It is known for their ability to balance exploration and has

been applied to a wide range of optimization problems in various domains [13], [14].

 GWO balances exploration (searching for new and potentially better solutions) and exploitation (refining

known good solutions). This balance is achieved through the leader-follower structure and position updates [13].

It emulates how wolves work together to locate and capture prey and speed the convergence, with alpha, beta,

and delta wolves leading the pack. Like many other metaheuristic algorithms, GWO operates on a population of

potential solutions (wolves). The quality of these solutions is assessed using a fitness function [13]. Also, GWO can

be applied to many different kinds of problems in optimization, including as discrete, mixed-variable, and

continuous problems. It can be adapted to various domains.

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

4

 Like many optimization algorithms, GWO may require parameter tuning to achieve optimal performance for

specific problems. Parameters may include the population size, the exploration-exploitation balance, and the rate of

convergence. The convergence speed of GWO can vary depending on the problem and parameter settings. It may

converge relatively quickly to a good solution in many cases [11]. On the other hand GWO can be parallelized,

allowing multiple instances of the algorithm to run concurrently, potentially speeding up the optimization process.

The Grey Wolf Optimization algorithm

The Grey Wolf Optimization algorithm aims to simulate the social behavior of grey wolves in a pack to

optimize a given objective function. It leverages the hierarchy within wolf packs to guide the exploration of the

solution space, with the Alpha, Beta, and Delta wolves playing distinct roles in this exploration. The algorithm's

effectiveness often depends on parameter tuning and its application to specific optimization problems [11], [13],

[14].

The GWO was initially presented in 2014. The GWO algorithm was modeled after the social intelligence taken

by behavior of grey wolves in terms of their pack leadership and in-wild hunting practices. A same social hierarchy

controls the balance of power and dominance within each grey wolf pack (see Figure 1). Alpha is the strongest wolf

in the pack and leads the others in feeding, migrating, and hunting. The strongest of the β wolves becomes

leadership of the pack in the event that the α wolf is absent due to illness or another reason, or in the event that an α

wolf passes away [21], [22].

Figure 1 illustrates how β and δ's combined dominance and power are less than α and β's. The GWO algorithm

is based on this type of social intelligence. It draws inspiration from both the hunting strategy and the hierarchical

behavior of grey wolves. Grey wolves have an effective set of movements when hunting in packs: pursuing,

encircling, bothering, and attacking. They can now hunt big creatures as prey because of this [21].

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

5

Figure 1: GWO Flowchart.

Characteristics of Multi-free Dynamic Schema (MFDS) algorithm

The MFDS algorithm presents a set of operators and techniques for solving optimization problems. Its use of

dynamic schema operators, adaptive grouping, and randomization can potentially lead to efficient exploration of the

solution space. This algorithm has some characteristic that improve the way to found optimal solution [15]. In

following part a short description of these characteristic:

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

6

1. MFDS uses a set of operations, such as random chromosomal generation, dynamic dissimilarity,

similarity, dynamic schema, and free dynamic schema. This diverse operators allows the algorithm to

explore different area of the solution space, potentially leading to improved convergence and solution

quality.

2. The concept of dynamic schema operator is an interesting aspect of the algorithm. This operator aims to

fixed high significant bits of each variable in the best chromosome and repeat it across the population,

then put 0 or 1 randomly in rest low significant bits. This can lead to rapid convergence to promising

regions in the solution space.

3. The algorithm introduces random aspect in part of population in each iteration. This randomization can

enhance diversity within the population, preventing premature convergence and promoting exploration

of the solution search space.

4. Adaptive Grouping: The algorithm divides the population into different groups, each group has specific

operator. This adaptive grouping is improving the efficiency of the optimization process.

(MFDS) algorithm

The MFDS algorithm is designed for complex optimization problems with constraints and leverages a

combination of schema operators, dissimilarity operators, and free dynamic schema operators to explore the solution

space effectively. It balances the exploitation of promising regions and the exploration of unexplored areas to find

optimal solutions [15].

The MFDS algorithm aims to find the optimal solution to a given optimization problem where a

function

 ()
 []

where is a given function.

Algorithm Steps:

1. Produce 2 M chromosomes, each one chromosome representing one point. Separate chromosomes into two

population (P0 and P1). P0 has four groups (G1, ..., G4), P1 has eight groups (G5,..., G12).

2. Compute the fitness function values () for every chromosome in two populations (P0) and (P1).

3. Sorting of the chromosomes is done according to the descending (for maximization) or ascending (for

minimization) values of the fitness function.

4. Replace the original chromosomes in groups G5 and G6 with the best 40% of the P0 chromosomes. To

replace the original chromosomes in the first half of P0, duplicate the first chromosome (Ch1) C times

and insert it in C randomly selected locations. In this case, C represents a portion of the population.

5. Create a one chromosome to represent the dynamic schema operator, from chromosomes A = Ch1 and B =

ChM/4 in the populations (P0). Duplicate this schema M/4 times and add it to (G3).

6. Apply the dynamic dissimilarity and similarity operators, respectively, to groups (G1) and (G2). The

dissimilarity and dynamic dissimilarity operators should be felt by groups (G5) and (G6), respectively.

7. To create six groups, G7 through G12, apply the free dynamic schema operator six times. A chromosome

is selected at random from the first quarter of the P0 solutions for every group. In each group, at

random, place 0s or 1s in the places indicated by asterisks (*).

8. In populations (P0) and (P1), every chromosome generated in Steps 4 to 8 replaces the previous ones in

positions ranging from 2 to 2M. Next, create the group's (G4) chromosomes at random.

9. Return to Step 2 and keep going until the stopping requirement is met.

Experimental results

Ten test functions are used to check the performance of two algorithms MFDS and GWO on these ten test

function. Table 1 show the 10 functions that are used in our study with their optimum solutions. In this work a run

time in seconds, mean number of iterations to reach the optimum solutions, the mean number of iterations are used.

The results was taken from 50 runs on each function for two algorithms MFDS and GWO, the maximum number of

iteration was 2500 iteration for each algorithm. Table 2 show the results of ten functions and the names of

optimization functions used in the evaluation with threshold value. Also, The success rate of GWO and MFDS for

each function.

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

7

For most functions, both the MFDS and GWO algorithms achieve a 100% success rate, indicating that they

were able to find a valid solution in all 50 runs. But some functions have a slightly lower success rate, like the

Goldstein-Price function, by using GWO which get a 66% success rate, where MFDS has get 100%, see Table 2.

The performance metrics was including mean number of iterations (or average time) and standard deviation,

where the (stander deviation and mean number of iterations) in MFDS almost were less than GWO.

Overall, Table 2 provides valuable insights into the comparative performance of the MFDS and GWO across a

range of optimization problems. The choice between these algorithms for a particular problem should depend on the

problem's characteristics and the trade-offs between convergence speed and solution quality.

Table 1: show the ten test functions [23]

Name Function D Range global optimum value

Martin and

Gaddy

function

 () ()
 ((

))
2 [] ()

Easom

function

 () () () ((
) (
)))

2

 []

 ()

Matyas

function
 () () 2

 []

 ()

Beale's

function

 () () (
)

 (
)

2

 []

 ()

Booth's

function
 () () (

)
2

 []

 ()

Goldstein–

Price

function

 () (() (

)) (
 () (

))

2 [] ()

Schaffer

N.2

function

 ()

 ()

(())

2

 []

 ()

Schwefel's

function

 ()

 ∑ (√)

2

 []

 ()

Drop-wave

function ()
 (√

)

 (

)
 2

 []

 ()

Levy N. 13

function

 ()
 ()
 ()

 [
 ()]
 ()

 [
 ()]

2

 []

 ()

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

8

Table 2: Results of MFDS and GWO algorithms

MFDS algorithm GWO algorithm

Name of

Function
Threshold

Minimum

number of

iter. with

Minimum

time in

seconds

Maximum

number of

iter. with

Maximum

time in

seconds

Mean

number of

iter. for all

successful

runs with

Average time

Stander

Deviation

of mean

number.

of iter.

Success.

rate of

MFDS

Minimum

number of

iter. with

Minimum

time in

seconds

Maximum

number of

iter. with

Maximum

time in

seconds

Mean number

of iter. for all

successful

runs with

Average time

Stander

Deviation of

mean

number. of

iter.

Success. rate

of GWO

Martin and

Gaddy
0.001

2 16 6
2 100%

196 724 505 200
100%

0.006 0.019 0.011 1.632622 2.05501 1.759751

Easom 0.001
6 167 58

42.5 100%
42 257 143 67

100%
0.018 0.253 0.087 1.576 1.877 1.683

Matyas 0.001
3 15 5

1.5 100%
5 7 7 0.65

100%
0.008 0.017 0.011 1.665 1.835 1.754

Beale's 0.001
4 34 7

3.7 100%
42 487 197 111

100%
0.010 0.037 0.014 1.569 1.784 1.675

Booth's 0.001
4 32 10

4.5 100%
131 721 460 167

100%
0.010 0.043 0.018 2.259 2.685 2.470

Goldstein–

Price
0.001

7 65 21
10.4 100%

51 212 122 46 66%
0.018 0.079 0.034 1.580 1.855 1.682

Schaffer

N.2
0.001

4 26 11
6.3 100%

7 11 10 1.35
100%

0.006 0.043 0.019 1.413682 1.6397 1.507925

Schwefel's 0.001
4 70 31 14.1

100%
2193 3000 2378 204

100%
0.008 0.110 0.047 2.39948 2.813568 2.52597

Drop-wave 0.001
5 69 30

16.6 100%
12 26 18 4.5

100%
0.019 0.1005 0.046 1.629516 1.793494 1.718351

Levy N. 13 0.001
5 37 11

6 100%
196 1318 730 371

100%
0.013 0.049 0.020 1.6546 2.1311 1.896

Radhwan Y. Al-jawadi /NTU Journal of Pure Sciences (2024) 3 (1) : 1-9

9

Conclusions

In this comparative study between the Multi-Free Dynamic Schema (MFDS) algorithm and the Grey Wolf

Optimization (GWO) algorithm, we evaluated their performance on a set of 10 test functions. The algorithms

were assessed based on runtime, the mean number of iterations needed to get the optimal results, both MFDS

and GWO have got 100% success rate in most test functions but with different runtime and number of iterations.

The MFDS was faster than GWO in runtime and number of iterations, we found valid solutions in all 50 runs.

However, there were a few exceptions, such as the Goldstein-Price function, where GWO achieved a 66%

success rate, while MFDS maintained a 100% success rate.

References

[1] I. Younas, “Using Genetic Algorithms for Large Scale Optimization of Assignment , Planning and Rescheduling

Problems,” Doctoral Thesis in Electronics and Computer Systems Stockholm, Sweden, 2014.

[2] S. Mirjalili, “Knowledge-Based Systems Moth-flame optimization algorithm : A novel nature-inspired heuristic

paradigm,” Knowledge-Based Syst., vol. 89, pp. 228–249, 2015, doi: 10.1016/j.knosys.2015.07.006.

[3] A. W. Mohamed, K. M. Sallam, P. Agrawal, A. A. Hadi, and A. K. Mohamed, “Evaluating the performance of

meta-heuristic algorithms on CEC 2021 benchmark problems,” Neural Comput. Appl., vol. 35, no. 2, pp. 1493–

1517, 2023, doi: 10.1007/s00521-022-07788-z.

[4] A. Forestiero, “Metaheuristic algorithm for anomaly detection in Internet of Things leveraging on a neural-driven

multiagent system,” Knowledge-Based Syst., vol. 228, p. 107241, 2021, doi: 10.1016/j.knosys.2021.107241.

[5] O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs, “Analyzing the BBOB results by means of

benchmarking concepts,” Evol. Comput., vol. 23, no. 1, pp. 161–185, 2015, doi: 10.1162/EVCO_a_00134.

[6] S. Mirjalili, “Knowledge-Based Systems SCA : A Sine Cosine Algorithm for solving optimization problems,” vol.

000, pp. 1–14, 2016, doi: 10.1016/j.knosys.2015.12.022.

[7] G. P. Rajappa, “Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony

Optimization,” 2012.

[8] M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics, Springer N., vol. 146. Springer New York Dordrecht

Heidelberg London, 2010. doi: 10.1007/978-1-4614-1900-6.

[9] O. Design, Numerical Methods for Constrained Optimum Design. 2017. doi: 10.1016/B978-0-12-800806-5/00012-

3.

[10] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Springer-Verlag Berlin Heidelberg, 2008.

[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014,

doi: 10.1016/j.advengsoft.2013.12.007.

[12] I. Montalvo, J. Izquierdo, R. Pérez-García, and M. Herrera, “Improved performance of PSO with self-adaptive

parameters for computing the optimal design of Water Supply Systems,” Eng. Appl. Artif. Intell. Elsevier, vol. 23,

no. 5, pp. 727–735, 2010, doi: 10.1016/j.engappai.2010.01.015.

[13] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf optimizer: a review of recent variants and

applications,” Neural Comput. Appl., vol. 30, no. 2, pp. 413–435, 2018, doi: 10.1007/s00521-017-3272-5.

[14] M. Karakoyun, A. Ozkis, and H. Kodaz, “A new algorithm based on gray wolf optimizer and shuffled frog leaping

algorithm to solve the multi-objective optimization problems,” Appl. Soft Comput. J., vol. 96, p. 106560, 2020,

doi: 10.1016/j.asoc.2020.106560.

[15] R. Al-Jawadi, M. Studniarski, and A. Younus, “An Optimization Algorithm Based on Multi-free Dynamic Schema

of Chromosomes,” Adv. Intell. Syst. Comput., vol. 1051, pp. 146–156, 2020, doi: 10.1007/978-3-030-30604-5_13.

[16] S. Shabir, “A Comparative Study of Genetic Algorithm and the Particle Swarm Optimization,” vol. 9, no. 2, pp.

215–223, 2016.

[17] D. S. Sanches and C. Music, “Comparative study of Genetic Algorithm and Ant Colony Optimization algorithm

performances for the task of guitar tablature transcription,” 2015, doi: 10.1109/BRACIS.2015.46.

[18] A. Gupta and S. Srivastava, “Comparative Analysis of Ant Colony and Particle Swarm Optimization Algorithms

for Distance Optimization,” Procedia Comput. Sci., vol. 173, no. 2019, pp. 245–253, 2020, doi:

10.1016/j.procs.2020.06.029.

[19] A. H. Halim, I. Ismail, and S. Das, Performance assessment of the metaheuristic optimization algorithms: an

exhaustive review, vol. 54, no. 3. Springer Netherlands, 2021. doi: 10.1007/s10462-020-09906-6.

[20] M. Optimization, N. Inelastic, and S. Trusses, “Performance of Six Metaheuristic Algorithms for Multi-Objective

Optimization of Nonlinear Inelastic Steel Trusses,” vol. 13, no. 4, pp. 1–26, 2023.

[21] M. Zhang et al., “The Strain Distribution Reconstructions Using GWO Algorithm and Verification by FBG

Experimental Data,” Appl. Sci., vol. 13, no. 3, 2023, doi: 10.3390/app13031259.

[22] G. Negi, A. Kumar, S. Pant, and M. Ram, “GWO: a review and applications,” Int. J. Syst. Assur. Eng. Manag., vol.

12, no. 1, 2021, doi: 10.1007/s13198-020-00995-8.

[23] R. Al-jawadi, “New Evolutionary Optimization Algorithms Using Similarities and Dissimilarities in Binary

Strings,” ph.D. thesis, Univ. Warsaw, 2018.

