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The most difficult step is to create new optimization algorithms and 

examine them using test functions. In this work, we present a 

comparison study on the performance of Gray Wolves Optimization 

(GWO) and Multi-free dynamic schema (MFDS) algorithms. The 

(MFDS) algorithm is a sophisticated optimization method created for 

solving optimization problems. It contains different operators (dynamic 

schema operator, dissimilarity operator, similarity operator and free 

dynamic schema operator). Where, The (GWO) is a meta-heuristic 

optimization algorithm inspired by the social behavior of grey wolves in 

a pack. This study focused on the run time and the number of iterations 

to reach the optimal solutions. The sample of this comparison was on ten 
functions. The results showed the superiority of an algorithm (MFDS) on 

(GWO) algorithm in most test functions, especially at the run time. The 

performance of any single-objective optimization algorithm is a tool to 

measures the effectiveness of any algorithm for determining out the best 

solution for a specific problem.    
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Introduction 

Single objective optimization algorithms are computational methods designed to find the best solution to a 

specific optimization problem where a single objective or criterion needs to be either maximized or minimized [1]. 

The applications of optimization algorithms are used in different fields, like as: (an engineering design, financial 

portfolio optimization to machine learning, operations research, and data analysis) [2], [3], [4].  

The performance of single-objective optimization algorithms is a crucial aspect that measures their effectiveness 

in getting the best solution for the problem at hand. The choice of optimization algorithm can significantly impact 

the efficiency and quality of the results. Therefore, assessing and comparing the performance of these algorithms is 

essential to ensure their suitability for different applications [4]. 

Benchmarking plays a major role in algorithm comparison and performance evaluation. The purpose of the 

benchmarking trials is to identify or estimate the optimal algorithm for resolving practical issues [3], [5]. 

The core principle of single objective optimization is to explore and search through a solution space, typically 

guided by an fitness function. This function returns a numerical value indicating the quality of a given solution. The 

optimization algorithm then iteratively refines and explores candidate solutions to approach the optimal or near-

optimal solution for the specified objective [6], [7]. Several optimization algorithms have been developed to address 

single objective optimization problems, each with its own strengths and suitability for different types of problems. 

Common examples include: 

Gradient Descent (GD): A first-order optimization algorithm that iteratively adjusts a solution based on the 

gradient of the objective function. It's widely used for smooth and differentiable functions [8], [9]. 

Genetic Algorithms (GA): Inspired by the principles of natural selection and evolution, genetic algorithms use 

genetic operators like mutation and crossover to explore the solution space and find optimal solutions [8], [10].  

Particle Swarm Optimization (PSO): PSO mimics the social behavior of birds or particles in a swarm to search for 

optimal solutions. It's effective for problems with many local optima [11], [12]. 

These algorithms differ in their exploration-exploitation trade-offs, convergence speeds, and suitability for 

different types of objective functions. The choice of algorithm depends on the specific problem and its 

characteristics. 

In this paper a comparative study was presented of (GWO) and (MFDS) algorithms. The (GWO) algorithm is a 

nature-inspired metaheuristic algorithm that mimics the hunting behavior of gray wolves. GWO's strength lies in its 

efficient exploration of solution spaces. However, GWO's applicability might be influenced by factors like 

parameter tuning and its adaptability to different optimization challenges [13], [14]. On the other hand, The (MFDS) 

algorithm is a complex optimization approach designed to solve optimization problems. It involves a combination of 

dynamic schema operators, dissimilarity operators, similarity operators,  and a unique use of free dynamic schema 

operators with part of population which regenerates randomly new chromosomes in each iteration [15]. This 

integration enables it to traverse complex solution spaces. The strengths of the algorithm include its diverse set of 

operators, including dynamic scheme operators that promote fast convergence. However, their complexity and 

parameter dependence may pose challenges across diverse problem domains. Let's discuss the characteristics of each 

algorithm and their differences in Section (3, 4). 

Literature review 

The study of [3] intends to evaluate the meta-heuristic algorithms performance on the Congress on Evolutionary 

Computation (CEC-2021) benchmark problems, considering factors such as convergence speed and solution quality 

on different problem types. The authors used binary operators  such as bias, shift and rotation to parameterize 

objective functions. Also, they illustrate better understanding of the strengths and weaknesses of various single 

optimization algorithms such as Differential evolution (DE), Gaining sharing knowledge-based algorithm (GSK), 

(GWO),  Particle swarm optimization (PSO). The results of [3] provide offering guidance on which algorithms may 

be best suited for different problem domains. 
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In [16]  a comparative study of the Genetic Algorithm (GA) and (PSO) was presented, the authors conclude that 

the PSO is quite similar to GA. are evolutionary search methods change from a set of points to another set of points 

within an iteration. The GA and PSO are valuable components of evolutionary optimization techniques, their use is 

restricted to specific problems due to certain drawbacks. The overall performance can be raised by combining GA 

and PSO in order to solve these problems. A combining these two algorithms results combination of benefits of GA 

and PSO in real-world applications. Thus, a hybrid GA and PSO algorithms is a promising area for further study. 

In [17]  the authors have compared GA and Ant Colony Optimization (ACO) on the guitar tab transcription 

problem, to convert a song in standard music notation (sheet music) into an alternative notation known as a guitar 

tab. The authors  found that the results from experiments by using a new dataset of 148 songs show the efficacy of 

the ACO approach to gives the best solutions for this task. 

A comparison of ACO and PSO algorithms for common problem optimization (distance optimization) was 

reported by the authors of [18]. Both methods were used to successfully solve the problem, and their respective 

performances were then quantitatively compared. The outcomes of the simulation demonstrate that the newly 

created ant colony optimization technique is the more reliable and superior of the two. 

In [19] the authors conclude that the field of meta-algorithms, it is well known that analyzing the algorithm's 

solution over N trial runs is required to determine performance; one run is insufficient. Subsequently, the algorithm's 

performance is examined in terms of efficiency and effectiveness, including a wide range of problem types such as 

discrete and continuous problems, as well as single and multiple objectives. The primary focus of the efficiency 

measure for single-objective problems is the rate of problem-solving, which encompasses several factors such as 

complexity, computational cost, diversity of search operators, convergence rate, and statistical measurements like 

ordered alternatives and cumulative distribution. Discrete problems with a single objective fall under a similar area. 

Running time is one of the important metrics, particularly for combinatorial problems.  

In [20] the authors present “Performance of Six Metaheuristic Algorithms for Multi-Objective Optimization of 

Nonlinear Inelastic Steel Trusses”. The work suggests new strategy for solving the steel trusses using direct analysis 

by using multi-objective optimization. The overall weight of the structure and its interstory drift or displacements 

were two competing goals that had been evaluated by nonlinear inelastic and nonlinear elastic models, respectively, 

to determine the limitations related to strength and serviceability load combinations. The six popular meta-heuristic 

algorithms were used to solve the developed MOO problem: generalized differential evolution (GDE3), PSO-based 

MOO using crowding, mutation, and ε-dominance (OMOPSO), non-dominated sorting genetic algorithm-II (NSGA-

II), NSGA-III, improving the strength Pareto evolutionary algorithm (SPEA2), and multi-objective evolutionary 

algorithm based on decomposition (MOEA/D). A planar 10 bar truss, a spatial 72 bar truss, a planar 47 bar power-

line truss, and a planar 113-bar truss bridge were the four truss structures that were examined. A planar 10 bar truss, 

a spatial 72 bar truss, a planar 47 bar power-line truss, and a planar 113 bar truss bridge were the four truss 

structures that were examined. 

The numerical outcomes demonstrated an inverse proportion and nonlinear relationship between the two 

objectives. All six algorithms were also effective in locating feasible, optimal solutions. While MOEA/D and 

NSGA-II appeared to be more adept at finding anchor points as well as Pareto, no algorithm was shown to perform 

better than the others. Additionally more stable and giving a better solution spread was MOEA/D . OMOPSO was 

also good at solution spread, but its stability was worse than MOEA/D. NSGA-III was less efficient at finding 

anchor points, although it can effectively search for Pareto points [20]. 

A comparative study is presented in this paper for both GWO and MFDS on performance on 10 test functions. 

Characteristics of Grey Wolf Optimization (GWO) algorithm 

The GWO is a population-based, nature-inspired optimization technique that uses a leader-follower structure to 

mimic the cooperative hunting behavior of grey wolves. It is known for their ability to balance exploration and has 

been applied to a wide range of optimization problems in various domains [13], [14]. 

 GWO balances exploration (searching for new and potentially better solutions) and exploitation (refining 

known good solutions). This balance is achieved through the leader-follower structure and position updates [13].  

It emulates how wolves work together to locate and capture prey and speed the convergence, with alpha, beta, 

and delta wolves leading the pack. Like many other metaheuristic algorithms, GWO operates on a population of 

potential solutions (wolves). The quality of these solutions is assessed using a fitness function [13]. Also, GWO can 

be applied to many different kinds of problems in optimization, including as discrete, mixed-variable, and 

continuous problems. It can be adapted to various domains. 
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 Like many optimization algorithms, GWO may require parameter tuning to achieve optimal performance for 

specific problems. Parameters may include the population size, the exploration-exploitation balance, and the rate of 

convergence. The convergence speed of GWO can vary depending on the problem and parameter settings. It may 

converge relatively quickly to a good solution in many cases [11]. On the other hand GWO can be parallelized, 

allowing multiple instances of the algorithm to run concurrently, potentially speeding up the optimization process. 

The Grey Wolf Optimization algorithm  

The Grey Wolf Optimization algorithm aims to simulate the social behavior of grey wolves in a pack to 

optimize a given objective function. It leverages the hierarchy within wolf packs to guide the exploration of the 

solution space, with the Alpha, Beta, and Delta wolves playing distinct roles in this exploration. The algorithm's 

effectiveness often depends on parameter tuning and its application to specific optimization problems [11], [13], 

[14]. 

The GWO was initially presented in 2014. The GWO algorithm was modeled after the social intelligence taken 

by behavior of grey wolves in terms of their pack leadership and in-wild hunting practices. A same social hierarchy 

controls the balance of power and dominance within each grey wolf pack (see Figure 1). Alpha is the strongest wolf 

in the pack and leads the others in feeding, migrating, and hunting. The strongest of the β wolves becomes 

leadership of the pack in the event that the α wolf is absent due to illness or another reason, or in the event that an α 

wolf passes away [21], [22].  

Figure 1 illustrates how β and δ's combined dominance and power are less than α and β's. The GWO algorithm 

is based on this type of social intelligence. It draws inspiration from both the hunting strategy and the hierarchical 

behavior of grey wolves. Grey wolves have an effective set of movements when hunting in packs: pursuing, 

encircling, bothering, and attacking. They can now hunt big creatures as prey because of this [21]. 
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Figure 1:  GWO Flowchart. 

 

 

Characteristics of Multi-free Dynamic Schema (MFDS) algorithm   

The MFDS algorithm presents a set of operators and techniques for solving optimization problems. Its use of 

dynamic schema operators, adaptive grouping, and randomization can potentially lead to efficient exploration of the 

solution space. This algorithm has some characteristic that improve the way to found optimal solution [15]. In 

following part a short description of these  characteristic: 
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1. MFDS uses a set of operations, such as random chromosomal generation, dynamic dissimilarity, 

similarity, dynamic schema, and free dynamic schema. This diverse operators allows the algorithm to 

explore different area of the solution space, potentially leading to improved convergence and solution 

quality. 

2. The concept of dynamic schema operator is an interesting aspect of the algorithm. This operator aims to 

fixed high significant bits of each variable in the best chromosome and repeat it across the population, 

then put 0 or 1 randomly in rest low significant bits. This can lead to rapid convergence to promising 

regions in the solution space. 

3. The algorithm introduces random aspect in part of population in each iteration. This randomization can 

enhance diversity within the population, preventing premature convergence and promoting exploration 

of the solution search space. 

4. Adaptive Grouping: The algorithm divides the population into different groups, each group has specific 

operator. This adaptive grouping is improving the efficiency of the optimization process. 

(MFDS) algorithm 

The MFDS algorithm is designed for complex optimization problems with constraints and leverages a 

combination of schema operators, dissimilarity operators, and free dynamic schema operators to explore the solution 

space effectively. It balances the exploitation of promising regions and the exploration of unexplored areas to find 

optimal solutions [15]. 

The MFDS algorithm aims to find the optimal solution to a given optimization problem where a 

function        

                   (       )              
    [     ]         

where         is a given function. 

Algorithm Steps: 

1. Produce 2 M chromosomes, each one chromosome representing one point. Separate chromosomes into two 

population (P0 and P1). P0 has four groups (G1, ..., G4), P1 has eight groups (G5,..., G12). 

2. Compute the fitness function values ( ) for every chromosome in two populations (P0) and (P1). 

3. Sorting of the chromosomes is done according to the descending (for maximization) or ascending (for 

minimization) values of the fitness function. 

4. Replace the original chromosomes in groups G5 and G6 with the best 40% of the P0 chromosomes. To 

replace the original chromosomes in the first half of P0, duplicate the first chromosome (Ch1) C times 

and insert it in C randomly selected locations. In this case, C represents a portion of the population. 

5. Create a one chromosome to represent the dynamic schema operator, from chromosomes A = Ch1 and B = 

ChM/4 in the populations (P0). Duplicate this schema M/4 times and add it to (G3).  

6. Apply the dynamic dissimilarity and similarity operators, respectively, to groups (G1) and (G2). The 

dissimilarity and dynamic dissimilarity operators should be felt by groups (G5) and (G6), respectively. 

7. To create six groups, G7 through G12, apply the free dynamic schema operator six times. A chromosome 

is selected at random from the first quarter of the P0 solutions for every group. In each group, at 

random, place 0s or 1s in the places indicated by asterisks (*).  

8. In populations (P0) and (P1), every chromosome generated in Steps 4 to 8 replaces the previous ones in 

positions ranging from 2 to 2M. Next, create the group's (G4) chromosomes at random. 

9. Return to Step 2 and keep going until the stopping requirement is met. 

Experimental results  

Ten test functions are used to check the performance of two algorithms MFDS and GWO on these ten test 

function. Table 1 show the 10 functions that are used in our study with their optimum solutions. In this work a run 

time in seconds, mean number of iterations to reach the optimum solutions, the mean number of iterations are used. 

The results was taken from 50 runs on each function for two algorithms MFDS and GWO, the maximum number of 

iteration was 2500 iteration for each algorithm. Table 2 show the results of ten functions and the names of 

optimization functions used in the evaluation with  threshold value. Also, The success rate of GWO and MFDS for 

each function.  
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For most functions, both the MFDS and GWO algorithms achieve a 100% success rate, indicating that they 

were able to find a valid solution in all 50 runs. But some functions have a slightly lower success rate, like the 

Goldstein-Price function, by using GWO which get a 66% success rate, where MFDS has get 100%, see Table 2. 

The performance metrics was including mean number of iterations (or average time) and standard deviation, 

where the (stander deviation and mean number of iterations) in MFDS almost were less than GWO. 

 

Overall, Table 2 provides valuable insights into the comparative performance of the MFDS and GWO across a 

range of optimization problems. The choice between these algorithms for a particular problem should depend on the 

problem's characteristics and the trade-offs between convergence speed and solution quality. 

 
Table 1: show the ten test functions [23] 

Name Function D Range global optimum value  

Martin and 

Gaddy 

function 

 (     )  (     )
  ((     

   )  )  
2        [      ]  (   )      

Easom 

function 

 (   )      ( )    ( )    ( ( 
  )  ( 
  ) )) 

2 
     
 [        ] 

 (   )     

Matyas 

function 
 (   )      (            ) 2 

      
 [       ] 

 (   )      

Beale's 

function 

 (   )  (        )  (    
       )  

 (       
    )  

2 
      
 [          ] 

 (     )      

Booth's 

function 
 (   )  (      )  (    

  )  
2 

      
 [        ] 

 (   )      

Goldstein–

Price 

function 

 (   )  (  (     )  (  
        

        
     ))  (  
 (     )  (  
         

         
      )) 

2        [      ]  (    )    

Schaffer 

N.2 

function 

 (   )

     
    (     )     

(       (     )) 
 

2 
      
 [          ] 

 (   )     

Schwefel's 

function 

 ( )
           

 ∑         (√    )

 

   

 

2 
      
 [          ] 

 (                 )
   

Drop-wave 

function (     )    
     (  √  

    
 )

   (  
    

 )   
 2 

      
 [            ] 

 (   )     

Levy N. 13 

function 

 (     )     
 (    )
 (    )

 [ 
    (    )]
 (    )

 [ 
    (    )] 

2 
      
 [       ] 

 (   )     
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Table 2: Results of MFDS and GWO algorithms  

MFDS algorithm GWO algorithm 

Name of 

Function  
Threshold 

Minimum  

number of 

iter. with 

Minimum 

time in 

seconds 

Maximum 

number of 

iter. with 

Maximum 

time in 

seconds 

Mean 

number of 

iter. for all 

successful 

runs with 

Average time 

Stander 

Deviation 

of mean 

number. 

of iter. 

Success. 

rate of 

MFDS 

Minimum  

number of 

iter. with 

Minimum 

time in 

seconds 

Maximum 

number of 

iter. with 

Maximum 

time in 

seconds 

Mean number 

of iter. for all 

successful 

runs with 

Average time 

Stander 

Deviation of 

mean 

number. of 

iter. 

Success. rate 

of GWO 

Martin and 

Gaddy 
0.001 

2 16 6 
2 100% 

196 724 505 200 
100% 

0.006 0.019 0.011 1.632622 2.05501 1.759751 

Easom 0.001 
6 167 58 

42.5 100% 
42 257 143 67 

100% 
0.018 0.253 0.087 1.576 1.877 1.683 

Matyas 0.001 
3 15 5 

1.5 100% 
5 7 7 0.65 

100% 
0.008 0.017 0.011 1.665 1.835 1.754 

Beale's 0.001 
4 34 7 

3.7 100% 
42 487 197 111 

100% 
0.010 0.037 0.014 1.569 1.784 1.675 

Booth's 0.001 
4 32 10 

4.5 100% 
131 721 460 167 

100% 
0.010 0.043 0.018 2.259 2.685 2.470 

Goldstein–

Price 
0.001 

7 65 21 
10.4 100% 

51 212 122 46 66% 
0.018 0.079 0.034 1.580 1.855 1.682 

Schaffer  

N.2 
0.001 

4 26 11 
6.3 100% 

7 11 10 1.35 
100% 

0.006 0.043 0.019 1.413682 1.6397 1.507925 

Schwefel's  0.001 
4 70 31 14.1 

100% 
2193 3000 2378 204 

100% 
0.008 0.110 0.047  2.39948 2.813568 2.52597 

Drop-wave 0.001 
5 69 30 

16.6 100% 
12 26 18 4.5 

100% 
0.019 0.1005 0.046 1.629516 1.793494 1.718351 

Levy N. 13 0.001 
5 37 11 

6 100% 
196 1318 730 371 

100% 
0.013 0.049 0.020 1.6546 2.1311 1.896 
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Conclusions  

 

In this comparative study between the Multi-Free Dynamic Schema (MFDS) algorithm and the Grey Wolf 

Optimization (GWO) algorithm, we evaluated their performance on a set of 10 test functions. The algorithms 

were assessed based on runtime, the mean number of iterations needed to get the optimal results, both MFDS 

and GWO have got 100% success rate in most test functions but with different runtime and number of iterations. 

The MFDS was faster than GWO in runtime and number of iterations, we found valid solutions in all 50 runs. 

However, there were a few exceptions, such as the Goldstein-Price function, where GWO achieved a 66% 

success rate, while MFDS maintained a 100% success rate. 
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