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ABSTRACT

In this paper, we introduce a set of new and significant functional concepts in topology, including ph-continuous functions,
ph-open functions (ph-openness), and ph-irresolute functions. The fundamental characteristic properties of these functions
are investigated, in addition to reviewing and defining the conditions for the concept of ph-homeomorphism. Furthermore,
we establish and define a new set of ph-separation axioms that enhance the precision of classifying topological spaces.
Subsequently, we analyse the interrelationships among these axioms and their points of distinction from the standard
axioms.
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Introduction

In a study [10], introduced and studied topological properties of pre-continuous function; and h-continuous function was introduced by
[1]; Askander [3] Biswas [4] Mashhour, Hasanein, and El-Deeb [11] Crossley [5] Maheshwari [8] Based on the definitions of open sets
they provided and examined different classes of continuity and other properties of functions in topological spaces. Munshi [12] proposed
separation axioms. Many topologists studied the separation axioms [6-8,13 and 14].

This study is an extension of a previous work (as cited in [2]) centered on ph-open sets, which constitute a generalization of both
standard open sets and h-open sets. Furthermore, they share certain properties with pre-open sets in topological spaces. In this research,
we present an extensive investigation of functions defined on these sets, with a particular focus on the concept of ph-continuity for these
functions. We identify the sets that preserve their properties under this type of continuity, in addition to exploring the notion of ph-
homeomorphism and the necessary conditions for the transfer of other topological properties. Finally, the ph-separation axioms defined

based on ph-open sets are studied, specifically addressing the analysis of TP", TP "and T?"spaces.

Materials & Methods

In this paper, we use the Mathematical logic, alongside other theories, was used as the foundation for the proofs of problems
and theorems

2. Ph-Continuous Functions
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In this section, we introduced a new further type of ph-continuous (ph-cont), ph-open (ph-o0) and ph-homeomorphism functions and
studied some properties of these functions.

Definition 2.1 [2]: For the topological space (T.S.) (X, ), the set S € X called pre-h-open (ph-os) if it is contained in the interior of
its h-closure, which is expressed as S € int(cl,(S)). The ph-o sets’ complement is named pre-h-closed (ph-c). We will put tP* to
indicate the collection of all ph-o sets defined in (X, 7).

Definition 2.2: A function f: (X,t;) = (Y, T,) is ph-open (ph-o), if f(A) is (ph-os) in Y, for any open set (0s) 4 in X.
Example 2.3: For R = {1,3,2} = S and 7 = {{2,3}, {2}, {1,2}, R, 0},

o ={5{2},{1,3}, 0}, 0" = {{2},{2,3},{1,2}, {3},{2},{1,3}, 0, 5}.

and f: (R, t) = (S, 0) is the identity function. Clearly f is (ph-o).

Theorem 2.4: If f: (X,t,) = (Y, T,) is open function, then f is (ph-o0) function.

Proof: Let S be (0s) in X. Since the zfunction f is open, then f(S) is (os) in Y. By (Theorem 2.5, [2]), f(S) is (ph-os) in Y. Hence, f
(ph-0). m

Note: The opposite of the above theorem is incorrect.

Example 2.5: From Example (2.3) f is (ph-0) but not (os).
Proposition 2.6: Every (ph-o) function is p-open (p-o0).

Proof: It is clear.

Note: Clearly, the opposite of the previous proposition is incorrect.

Example 2.7: Let X = {2,1,3} = Y, v = {X, {1}, {1,3}, 0}, 0 = {Y,{1,2}, 0}, 0P = {{2},{2,3},{1},{2,3},0, Y}, oP" = {V,{1,2}, 0} and
f:(X,1) = (Y, 0) is an identity function. Hence f is not (ph-o) function.

Proposition 2.8: If f: (X,7,) = (Y, 1) is open function and h: (Y, 1,) = (Z, t3) be is (ph-0), then h o f: (X, 7,) = (Z, 73) is (ph-0).

Proof: Consider any (0s) A in X. Because f is an open function, f(A) is also (o0s) in Y. By (Theorem 2.5, [2]), f(A) is (ph-o0s) in Y.
Since h is (ph-0), then (h o f)(A) = h(f(A)) is (ph-o0s) in Z. Hence h o f is (ph-0). =

Next, we provide the next definition:

Definition 2.9: The function f: (R, t;) = (S, ;) named ph-continuous (ph-cont). If f~1(4) is (ph-os) in R for an (0s) A in S.
Example 2.10: Let R = {b,a,c} and S = {3,1,2} 7 = {{b}, @, R},

% = {{a, b}, 0, R, {b}} and ¢ = {{1},{1,3},0,S}. Let f: (R, T) = (S, 0) is the ideality function. Then f is (ph-cont).
Proposition 2.11: Let the function f: (X, 7;) = (Y, 7,) be (cont), then f is (ph-cont).

Proof: Consider an open subset 4 in Y. Since f is (cont), then f~1(4) is (0s) in X. According to Theorem 2.5, [2], the f~1(A) is a (ph-
os) in X. Therefore, f is (ph-cont). m

Note: The converse of the previous proposition is incorrect.

Example 2.12: Let R = {c,a, b}, T = {{b}, R, 0}, t?" = {{b,c},{b},0,{a, b}, R}, S = {3,1,2} 0 = {5, ®,{1,3}}. A function T: (R, 1) —
(S,0) is defined by T(a) = 2, T(b) = 1, T(c) = 3. Clearly, T is (ph-cont) but not (cont) function.

Proposition 2.13: Let the function f: (X, 7;) = (¥, t,) be (ph-cont), then f is p-(cont) function.

Proof: Since f is (ph-cont) function, then by Definition (2.9). Let G be an (o0s) in Y, then the inverse image of G is (ph-os) in X, by
(Theorem (2.10), [2]) the inverse image of G is (p-os) in X. Hence f is p-(cont). =

Note: The opposite of the previous proposition is incorrect.
Example 2.14: LetR = {b,c,a}, T = {{b, a},R, (Z)},

P = {{b,c},R,{b,a},®,{c,a}, {a}, {b}} TP" = (R, 0,{b,a}}, S={3,1,2}, o={{21},0,5}, and f:(R,T) > (S,0) be defined as
f(a) =3, f(c) =2, f(b) = 1. Clearly, f is p-(cont) but not (ph-cont) function.

Theorem 2.15: Let f: (X, 1,) = (¥, ;) is (ph-cont) and h: (Y, 1,) = (Z,13) is (cont), then h o f is (ph-cont).
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Proof: Consider any open subset 4 in Z. Since we have h is (cont) function then h™1(A4) is (os) in Y. Since f is (ph-cont), then
fH(h"(A)) = (h o f)71(A) is (ph-os) in X. Therefore h o f is (ph-cont) function. m

Definition 2.16: The function f: (R, ;) = (S,7,) named ph-irresolute. If f ~*(A) is (ph-os) in R for every (ph-os) Ain S.
Example 2.17: Let R = {c,b,a} and S = {3,1,2} 7 = {{b}, @, R},

tP" = {{a, b},®,R,{b}} and o = {{1},{1,3}, @, S} and oP" = {{1,3}, @, {1}, S}. Let f: (R, T) — (S, o) is the ideality function. Then f is
ph-irresolute.

Theorem 2.18:

1) Let f:(X,t) = (Y, 0) be (cont) function, then f is ph-irresolute.
2) Letf:(X,7) = (Y, 0) be ph-irresolute function, then f is (ph-cont).

Proof (1): Consider any (ph-os) 4 in Y and since we have f is a (cont). Then f~1(A) is (0s) in X and by Theorem 2.3 the f~1(4) is
(ph-os) in X. Therefore, f is ph-irresolute.

(2) Consider any open subset A in Y and f is ph-irresolute. We have A is (ph-os) by (Theorem 2.5, [2]), since f is ph-irresolute, then
f~1(A) is (ph-os) in X. So, f is (ph-cont). m

Theorem 2.19: Let f: (X, 1) — (Y,9) and h: (Y,9) - (Z,n) are ph-irresolute, then h o f: (X,7) = (Z,n) is ph-irresolute.

Proof.:Consider any (ph-os) A in Z. Since h is ph-irresolute, then h=1(A) is (ph-os) in Y. Since f is ph-irresolute, then f '1(h‘1(A)) =
(ho f)1(A) is (ph-os) in X. Hence, h o f is ph-irresolute. m

Definition 2.20: Let f: (X, 7,) = (Y, 1,) be a bijective function then it is ph-homemorphism if f is ph- (cont) and (ph-o0) function.

Example2.21: Let X ={c,a,b}, 7 ={X,{b},0,{b,a}}, " ={X,{b},0,{b,a}}, Y ={3,1,2}, o={{2},{1,3},0,Y}, oPh=
{0,Y,{3},{1},{2}, {2,1}, {3,1},{3,2}} and f:(X,7) » (Y,0) be defined as f(b) =3, f(a) =1, f(c) =2. Hence f is ph-
homeomorphism.

Theorem 2.22: Every homeomorphism function is ph-homeomorphism.

Proof: Let f: (X,7) = (Y, o) be homeomorphism function. Then f is (cont) and by Proposition (2.10) f is the (ph-cont) and by Theorem
(2.3), f is (ph-o) function. Since f is bijective. Then f is ph- homeomorphism function. m

The opposite of the previous theorem is incorrect.

Example2.23: Let X = Y = {3,1,2}, 7 = {X,{1,3},0,{1}} = t", 0 = {{1},0,Y}, o” = {{1,2},8, {1}, {1,3}, Y} and f: (X, T) = (Y,0)

be the ideality function. Hence f is not homeomorphism.
Proposition 2.24: Every ph- homeomorphism function is p-homeomorphism.

Proof: Let f:(X,t) = (Y,0) be ph- homeomorphism function. Then f is (ph-cont) function, (ph-o) and bijective function by
Proposition (2.12), f is p-(cont) and by Proposition (2.5), f is p-open and f is bijective. Hence f is p- homeomorphism function. =

The opposite of the above proposition is incorrect.

Example 2.25: Let X = {c,a, b}, T = {0, {a, b}, X},

° = {{a},{b, ¢}, 0, X,{b,a},{b},{c,a}} t"" = {®,{a, b}, X}, Y ={3,1,2}, o ={{2,1},0,Y}, and f:(X,7) - (Y,0) be defined as
f(b) =1, f(a) =3, f(c) = 2. Clearly, f is p-homeomorphism but not ph-homeomorphism function.

3- ph-Separation Axioms

In this section, we prove some results on Tl.ph—space, i = 0,1,2, we recall the following definition:

Definition 3.1: A T.S. (X, 1) is referred to as Top h-space, if for every a,b € X, a # b, there exists (ph-os) containing one but not
containing the other.

Definition 3.2: AT.S. (X, 7) is referred to as Tlph—space if for every a, b € X, a # b there exists a pair of (ph-0) sets, one containing a
but not b, and the other containing b but not a.

Definition 3.3: A T.S. (X, 1) is referred to as szh-space if for every a,b € X, a # b there exists a pair of disjoint (ph-o) sets, one
containing a, and the other containing b.
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Theorem 3.4: Every T,-space is Top h-space.

Proof: Let (X, ) is Ty-space and x,y € X, x # y. Then there exists (0s) A € X. Such that x € 4,y ¢ A. By (Theorem 2.5, [2]) every
(0s) is (ph-os). Hence X is Top h-space. ]

Theorem 3.5: Every T;-space is Tlph-space.

Proof: Let (X, 7) is T;-space and x,y € X, x # y. Then there exists two open sets 4, B in X such that x € A,y € Aand x € B,y € B.
By (Theorem 2.5, [2]) every (os) is (ph-os). Therefore, X is Tlph-space. ]

Theorem 3.6: Every T,-space is szh-space.

Proof: Let (X, 1) is T,-space and x,y € X, x # y. Then there exists two disjoint open sets A, B in X such that x € A and y € B. By
(Theorem 2.5, [2]) every (os) is (ph-os). Therefore, X is Tlph—space. ]

Theorem 3.7:
1) Every TP"-space is T""-space.
2) Every szh-space is Tlph-space.
Proof: (1) and (2) are Clear.
Theorem 3.8: AT.S. (X,7) is T} h—space if and only if {a}#{b} for every pair of different points a, b € X.

Proof: Let a, b be any two different points of T "_space X. We show that {a}* # {b}*. By hypothesis, assume that 4 is (ph-os) such
that a € A and b € A. Hence b € X — A and X — A is ph-closed set. Therefore, {b}* € X — A. Hence b € {b}*, a ¢ X — A. Hence
{a}* # {b}".

Conversely: assume that for all a, b € X witha # b, {a}* # {b}*. Now, let z € X such that z € {a}* but z & {b}*. If a € {b}" then{a} C
{b}* which implies that {a}* c {b}*. Thus a € {a}" and z & {b}". This is contradiction. Therefore, a € {b}*. Hence X — {b}" is (ph-o0s)

containing a but not b. So X is Toph—space. ]
Theorem 3.9: Every T""-space is T/ -space.

Proof: Let a space X is Tlph-space and x,y € X, x # y. Then there exists (ph-0) sets A, B suchthaty ¢ A, x € Aandy € B,x ¢ B. By
(Theorem (2.10), [2]) every (ph-o0s) is p-open. Hence X is Tlp-space. ]

We have the following relations on Tl-ph—space, i =0,1,2 see figure 1.

T, | | To
/ .
h ph
T, To
ph
T1

Figure 1. Relation with separation axiom
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Results & Discussion

In this research, it was proven that every open function is necessarily a ph-open function, with a counterexample provided to show that
the converse is not true. Similarly, it was established that every ph-open function is a p-open function, while the converse also remains
false, which was further supported by a counterexample. Regarding the concept of continuity, the results indicated that a continuous
function is ph-o continuous, but the converse does not hold. Finally, within the context of Separation Axioms, the study concluded the

L . . . —ph . mph . mph h . —ph
following inclusion relations: Every T-space is T'(; -space, every Tq-spaceis TY ', eery T,-space is Th ", every T’lJ -space 1s Tg -space,

h . ph . .
every T'Z’ -space is T'; -space, noting that all converse relations are not true.

Conclusion

This study presents an extension of the concept of h-open sets and their associated functions. We established inclusion relations between
ph-open functions, open functions, and p-open functions, as well as between continuity and ph-o-continuity, confirming in each case
that the converse is not true through counterexamples. Furthermore, a new set of ph-separation axioms (T, to T,) was constructed and
investigated, which includes their standard counterparts and demonstrates the unidirectional inclusion relationships between them.
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