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ABSTRACT 

In this paper, we introduce a set of new and significant functional concepts in topology, including ph-continuous functions, 

ph-open functions (ph-openness), and ph-irresolute functions. The fundamental characteristic properties of these functions 

are investigated, in addition to reviewing and defining the conditions for the concept of ph-homeomorphism. Furthermore, 

we establish and define a new set of ph-separation axioms that enhance the precision of classifying topological spaces. 

Subsequently, we analyse the interrelationships among these axioms and their points of distinction from the standard 

axioms. 

Keywords: ph-continuity, ph-openness, ph-irresolute, ph-homeomorphism, ph-separation axioms 

Introduction 

In  a study [10], introduced and studied topological properties of pre-continuous function; and ℎ-continuous function was introduced by 

[1]; Askander [3] Biswas [4] Mashhour, Hasanein, and El-Deeb [11] Crossley [5] Maheshwari [8] Based on the definitions of open sets 

they provided and examined different classes of continuity and other properties of functions in topological spaces. Munshi [12] proposed 

separation axioms. Many topologists studied the separation axioms [6-8,13 and 14]. 

This study is an extension of a previous work (as cited in [2]) centered on ph-open sets, which constitute a generalization of both 

standard open sets and h-open sets. Furthermore, they share certain properties with pre-open sets in topological spaces. In this research, 

we present an extensive investigation of functions defined on these sets, with a particular focus on the concept of ph-continuity for these 

functions. We identify the sets that preserve their properties under this type of continuity, in addition to exploring the notion of ph-

homeomorphism and the necessary conditions for the transfer of other topological properties. Finally, the ph-separation axioms defined 

based on ph-open sets are studied, specifically addressing the analysis of 𝑇0
𝑝ℎ

, 𝑇1
𝑝ℎ

and 𝑇2
𝑝ℎ

spaces. 

Materials & Methods  

In  this  paper,  we  use  the  Mathematical  logic,  alongside  other  theories,  was  used  as  the  foundation  for  the proofs of problems 

and theorems 

2. Ph-Continuous Functions 
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In this section, we introduced a new further type of ph-continuous (ph-cont), ph-open (ph-o) and ph-homeomorphism functions and 

studied some properties of these functions. 

Definition 2.1 [2]: For the topological space (T.S.) (𝑋, 𝜏), the set 𝑆 ⊆ 𝑋  called 𝑝𝑟𝑒-ℎ-open (𝑝ℎ-os) if it is contained in the interior of 

its ℎ-closure, which is expressed as 𝑆 ⊆ 𝑖𝑛𝑡(𝑐𝑙ℎ(𝑆)). The 𝑝ℎ-o sets’ complement is named 𝑝𝑟𝑒-ℎ-closed (𝑝ℎ-c). We will put 𝜏𝑝ℎ to 

indicate the collection of all 𝑝ℎ-o sets defined in (𝑋, 𝜏). 

Definition 2.2: A function 𝑓: (𝑋, 𝜏1) → (𝑌, 𝜏2) is ph-open (ph-o), if 𝑓(𝐴) is (𝑝ℎ-os) in 𝑌, for any open set (os) 𝐴 in 𝑋. 

Example 2.3: For 𝑅 = {1,3,2} = 𝑆 and 𝜏 = {{2,3}, {2}, {1,2}, 𝑅, ∅}, 

𝜎 = {𝑆, {2}, {1,3}, ∅}, 𝜎𝑝ℎ = {{2}, {2,3}, {1,2}, {3}, {2}, {1,3}, ∅, 𝑆}. 

and 𝑓: (𝑅, 𝜏) → (𝑆, 𝜎) is the identity function. Clearly 𝑓 is (ph-o). 

Theorem 2.4: If 𝑓: (𝑋, 𝜏1) → (𝑌, 𝜏2) is open function, then 𝑓 is (ph-o) function. 

Proof: Let 𝑆 be (os) in 𝑋. Since the  حfunction 𝑓 is open, then 𝑓(𝑆) is (os) in 𝑌. By (Theorem 2.5, [2]), 𝑓(𝑆) is (𝑝ℎ-os) in 𝑌. Hence, 𝑓 

(ph-o). ■ 

Note: The opposite of the above theorem is incorrect. 

Example 2.5: From Example (2.3) 𝑓 is (ph-o) but not (os). 

Proposition 2.6: Every (ph-o) function is p-open (p-o).  

Proof: It is clear.     

Note: Clearly, the opposite of the previous proposition is incorrect. 

Example 2.7: Let 𝑋 = {2,1,3} = 𝑌, 𝜏 = {𝑋, {1}, {1,3}, ∅}, 𝜎 = {𝑌, {1,2}, ∅}, 𝜎𝑝 = {{2}, {2,3}, {1}, {2,3}, ∅, 𝑌}, 𝜎𝑝ℎ = {𝑌, {1,2}, ∅} and 

𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is an identity function. Hence 𝑓 is not (ph-o) function. 

Proposition 2.8: If 𝑓: (𝑋, 𝜏1) → (𝑌, 𝜏2) is open function and ℎ: (𝑌, 𝜏2) → (𝑍, 𝜏3) be is (ph-o), then ℎ ∘ 𝑓: (𝑋, 𝜏1) → (𝑍, 𝜏3) is (ph-o). 

Proof: Consider any (os) 𝐴 in 𝑋. Because 𝑓 is an open function, 𝑓(𝐴) is also (os) in 𝑌. By (Theorem 2.5, [2]), 𝑓(𝐴) is (𝑝ℎ-os) in 𝑌. 

Since ℎ is (ph-o), then (ℎ ∘ 𝑓)(𝐴) = ℎ(𝑓(𝐴)) is (𝑝ℎ-os) in 𝑍. Hence ℎ ∘ 𝑓 is (ph-o).   ■ 

Next, we provide the next definition: 

Definition 2.9: The function 𝑓: (𝑅, 𝜏1) → (𝑆, 𝜏2) named ph-continuous (ph-cont). If 𝑓−1(𝐴) is (ph-os) in 𝑅 for an (os) 𝐴 in 𝑆. 

Example 2.10: Let 𝑅 = {𝑏, 𝑎, 𝑐} and 𝑆 = {3,1,2} 𝜏 = {{𝑏}, ∅, 𝑅},  

𝜏𝑝ℎ = {{𝑎, 𝑏}, ∅, 𝑅, {𝑏}} and 𝜎 = {{1}, {1,3}, ∅, 𝑆}. Let 𝑓: (𝑅, 𝜏) → (𝑆, 𝜎) is the ideality function. Then 𝑓 is (ph-cont). 

Proposition 2.11: Let the function 𝑓: (𝑋, 𝜏1) → (𝑌, 𝜏2) be (cont), then 𝑓 is (ph-cont). 

Proof: Consider an open subset 𝐴 in 𝑌. Since 𝑓 is (cont), then 𝑓−1(𝐴) is (os) in 𝑋. According to Theorem 2.5, [2], the 𝑓−1(𝐴) is a (ph-

os) in 𝑋. Therefore, 𝑓 is (ph-cont).   ■ 

Note: The converse of the previous proposition is incorrect. 

Example 2.12: Let 𝑅 = {𝑐, 𝑎, 𝑏}, 𝜏 = {{𝑏}, 𝑅, ∅}, 𝜏𝑝ℎ = {{𝑏, 𝑐}, {𝑏}, ∅, {𝑎, 𝑏}, 𝑅}, 𝑆 = {3,1,2} 𝜎 = {𝑆, ∅, {1,3}}. A function 𝑇: (𝑅, 𝜏) →

(𝑆, 𝜎) is defined by 𝑇(𝑎) = 2, 𝑇(𝑏) = 1, 𝑇(𝑐) = 3. Clearly, 𝑇 is (ph-cont) but not (cont) function. 

Proposition 2.13: Let the function 𝑓: (𝑋, 𝜏1) → (𝑌, 𝜏2) be (ph-cont), then 𝑓 is p-(cont) function. 

Proof: Since 𝑓 is (ph-cont) function, then by Definition (2.9). Let 𝐺 be an (os) in 𝑌, then the inverse image of 𝐺 is (ph-os) in 𝑋, by 

(Theorem (2.10), [2]) the inverse image of 𝐺 is (p-os) in 𝑋. Hence 𝑓 is p-(cont).   ■ 

Note: The opposite of the previous proposition is incorrect. 

Example 2.14: Let 𝑅 = {𝑏, 𝑐, 𝑎}, 𝜏 = {{𝑏, 𝑎}, 𝑅, ∅},  

𝜏𝑝 = {{𝑏, 𝑐}, 𝑅, {𝑏, 𝑎}, ∅, {𝑐, 𝑎}, {𝑎}, {𝑏}} 𝜏𝑝ℎ = {𝑅, ∅, {𝑏, 𝑎}}, 𝑆 = {3,1,2},  𝜎 = {{2,1}, ∅, 𝑆}, and 𝑓: (𝑅, 𝜏) → (𝑆, 𝜎) be defined as 

𝑓(𝑎) = 3, 𝑓(𝑐) = 2, 𝑓(𝑏) = 1. Clearly, 𝑓 is p-(cont) but not (ph-cont) function. 

Theorem 2.15: Let 𝑓: (𝑋, 𝜏1) → (𝑌, 𝜏2) is (ph-cont) and ℎ: (𝑌, 𝜏2) → (𝑍, 𝜏3) is (cont), then ℎ ∘ 𝑓 is (ph-cont). 
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Proof: Consider any open subset 𝐴 in 𝑍. Since we have ℎ is (cont) function then ℎ−1(𝐴) is (os) in 𝑌. Since 𝑓 is (ph-cont), then 

𝑓−1(ℎ−1(𝐴)) = (ℎ ∘ 𝑓)−1(𝐴) is (ph-os) in 𝑋. Therefore ℎ ∘ 𝑓 is (ph-cont) function.   ■ 

Definition 2.16: The function 𝑓: (𝑅, 𝜏1) → (𝑆, 𝜏2) named ph-irresolute. If 𝑓−1(𝐴) is (ph-os) in 𝑅 for every (ph-os) 𝐴 in 𝑆. 

Example 2.17: Let 𝑅 = {𝑐, 𝑏, 𝑎} and 𝑆 = {3,1,2} 𝜏 = {{𝑏}, ∅, 𝑅},  

𝜏𝑝ℎ = {{𝑎, 𝑏}, ∅, 𝑅, {𝑏}} and 𝜎 = {{1}, {1,3}, ∅, 𝑆} and 𝜎𝑝ℎ = {{1,3}, ∅, {1}, 𝑆}. Let 𝑓: (𝑅, 𝜏) → (𝑆, 𝜎) is the ideality function. Then 𝑓 is 

ph-irresolute. 

Theorem 2.18:  

1) Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be (cont) function, then 𝑓 is ph-irresolute. 

2) Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be ph-irresolute function, then 𝑓 is (ph-cont).  

Proof (1): Consider any (ph-os) 𝐴 in 𝑌 and since we have 𝑓 is a (cont). Then 𝑓−1(𝐴) is (os) in 𝑋 and by Theorem 2.3 the 𝑓−1(𝐴) is 

(ph-os) in 𝑋. Therefore, 𝑓 is ph-irresolute. 

(2) Consider any open subset 𝐴 in 𝑌 and 𝑓 is ph-irresolute. We have 𝐴 is (ph-os) by (Theorem 2.5, [2]), since 𝑓 is ph-irresolute, then 

𝑓−1(𝐴) is (ph-os) in 𝑋. So, 𝑓 is (ph-cont). ■ 

Theorem 2.19: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜗) and ℎ: (𝑌, 𝜗) → (𝑍, 𝜂) are ph-irresolute, then ℎ ∘ 𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is ph-irresolute. 

Proof.:Consider any (ph-os) 𝐴 in 𝑍. Since ℎ is ph-irresolute, then ℎ−1(𝐴) is (ph-os) in 𝑌. Since 𝑓 is ph-irresolute, then 𝑓−1(ℎ−1(𝐴)) =

(ℎ ∘ 𝑓)−1(𝐴)  is (ph-os) in 𝑋. Hence, ℎ ∘ 𝑓 is ph-irresolute.   ■ 

Definition 2.20: Let 𝑓: (𝑋, 𝜏1) → (𝑌, 𝜏2) be a bijective function then it is ph-homemorphism if 𝑓 is ph- (cont) and (ph-o) function. 

Example2.21: Let 𝑋 = {𝑐, 𝑎, 𝑏}, 𝜏 = {𝑋, {𝑏}, ∅, {𝑏, 𝑎}}, 𝜏𝑝ℎ = {𝑋, {𝑏}, ∅, {𝑏, 𝑎}}, 𝑌 = {3,1,2},  𝜎 = {{2}, {1,3}, ∅, 𝑌}, 𝜎𝑝ℎ =

{∅, 𝑌, {3}, {1}, {2}, {2,1}, {3,1},{3,2}} and 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be defined as 𝑓(𝑏) = 3, 𝑓(𝑎) = 1, 𝑓(𝑐) = 2. Hence 𝑓 is ph-

homeomorphism. 

Theorem 2.22: Every homeomorphism function is ph-homeomorphism. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be homeomorphism function. Then 𝑓 is (cont) and by Proposition (2.10) 𝑓 is the (ph-cont) and by Theorem 

(2.3), 𝑓 is (ph-o) function. Since 𝑓 is bijective. Then 𝑓 is ph- homeomorphism function.   ■ 

The opposite of the previous theorem is incorrect. 

Example2.23: Let 𝑋 = 𝑌 = {3,1,2}, 𝜏 = {𝑋, {1,3}, ∅, {1}} = 𝜏𝑝ℎ, 𝜎 = {{1}, ∅, 𝑌}, 𝜎𝑝 = {{1,2}, ∅, {1}, {1,3}, 𝑌} and 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) 

be the ideality function. Hence 𝑓 is not homeomorphism. 

Proposition 2.24: Every ph- homeomorphism function is p-homeomorphism. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be ph- homeomorphism function. Then 𝑓 is (ph-cont) function, (ph-o) and bijective function by 

Proposition (2.12), 𝑓 is p-(cont) and by Proposition (2.5), 𝑓 is p-open and 𝑓 is bijective. Hence 𝑓 is p- homeomorphism function.   ■ 

The opposite of the above proposition is incorrect. 

Example 2.25: Let 𝑋 = {𝑐, 𝑎, 𝑏}, 𝜏 = {∅, {𝑎, 𝑏}, 𝑋},  

𝜏𝑝 = {{𝑎}, {𝑏, 𝑐}, ∅, 𝑋, {𝑏, 𝑎}, {𝑏}, {𝑐, 𝑎}} 𝜏𝑝ℎ = {∅, {𝑎, 𝑏}, 𝑋}, 𝑌 = {3,1,2},  𝜎 = {{2,1}, ∅, 𝑌}, and 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be defined as 

𝑓(𝑏) = 1, 𝑓(𝑎) = 3, 𝑓(𝑐) = 2. Clearly, 𝑓 is p-homeomorphism but not ph-homeomorphism function. 

3- ph-Separation Axioms 

In this section, we prove some results on 𝑇𝑖
𝑝ℎ

-space, 𝑖 = 0,1,2, we recall the following definition: 

Definition 3.1: A T.S. (𝑋, 𝜏) is referred to as 𝑇0
𝑝ℎ

-space, if for every 𝑎, 𝑏 ∈ 𝑋, 𝑎 ≠ 𝑏, there exists (ph-os) containing one but not 

containing the other. 

Definition 3.2: A T.S. (𝑋, 𝜏) is referred to as 𝑇1
𝑝ℎ

-space if for every 𝑎, 𝑏 ∈ 𝑋, 𝑎 ≠ 𝑏 there exists a pair of (ph-o) sets, one containing 𝑎 

but not 𝑏, and the other containing 𝑏 but not 𝑎. 

Definition 3.3: A T.S. (𝑋, 𝜏) is referred to as 𝑇2
𝑝ℎ

-space if for every 𝑎, 𝑏 ∈ 𝑋, 𝑎 ≠ 𝑏 there exists a pair of disjoint (ph-o) sets, one 

containing 𝑎, and the other containing 𝑏. 
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Theorem 3.4: Every 𝑇0-space is 𝑇0
𝑝ℎ

-space. 

Proof: Let (𝑋, 𝜏) is 𝑇0-space and 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦. Then there exists (os) 𝐴 ⊆ 𝑋. Such that 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴. By (Theorem 2.5, [2]) every 

(os) is (ph-os). Hence 𝑋 is 𝑇0
𝑝ℎ

-space.   ■ 

Theorem 3.5: Every 𝑇1-space is 𝑇1
𝑝ℎ

-space. 

Proof: Let (𝑋, 𝜏) is 𝑇1-space and 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦. Then there exists two open sets 𝐴, 𝐵 in 𝑋 such that 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴 and 𝑥 ∉ 𝐵, 𝑦 ∈ 𝐵. 

By (Theorem 2.5, [2]) every (os) is (ph-os). Therefore, 𝑋 is 𝑇1
𝑝ℎ

-space.   ■ 

Theorem 3.6: Every 𝑇2-space is 𝑇2
𝑝ℎ

-space. 

Proof: Let (𝑋, 𝜏) is 𝑇2-space and 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦. Then there exists two disjoint open sets 𝐴, 𝐵 in 𝑋 such that 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. By 

(Theorem 2.5, [2]) every (os) is (ph-os). Therefore, 𝑋 is 𝑇1
𝑝ℎ

-space.   ■ 

Theorem 3.7:  

1) Every 𝑇1
𝑝ℎ

-space is 𝑇0
𝑝ℎ

-space. 

2) Every 𝑇2
𝑝ℎ

-space is 𝑇1
𝑝ℎ

-space. 

Proof: (1) and (2) are Clear.   

Theorem 3.8: A T.S. (𝑋, 𝜏) is 𝑇0
𝑝ℎ

-space if and only if {𝑎}≠{𝑏} for every pair of different points 𝑎, 𝑏 ∈ 𝑋. 

Proof: Let 𝑎, 𝑏 be any two different points of 𝑇0
𝑝ℎ

-space 𝑋. We show that {𝑎}∗ ≠ {𝑏}∗. By hypothesis, assume that 𝐴 is (ph-os) such 

that 𝑎 ∈ 𝐴 and 𝑏 ∉ 𝐴. Hence 𝑏 ∈ 𝑋 − 𝐴 and 𝑋 − 𝐴 is ph-closed set. Therefore, {𝑏}∗ ⊂ 𝑋 − 𝐴. Hence 𝑏 ∈ {𝑏}∗, 𝑎 ∉ 𝑋 − 𝐴. Hence 

{𝑎}∗ ≠ {𝑏}∗. 

Conversely: assume that for all 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ≠ 𝑏, {𝑎}∗ ≠ {𝑏}∗. Now, let 𝑧 ∈ 𝑋 such that 𝑧 ∈ {𝑎}∗ but 𝑧 ∉ {𝑏}∗. If 𝑎 ∈ {𝑏}∗ then {𝑎} ⊂

{𝑏}∗ which implies that {𝑎}∗ ⊂ {𝑏}∗. Thus 𝑎 ∈ {𝑎}∗ and 𝑧 ∉ {𝑏}∗. This is contradiction. Therefore, 𝑎 ∈ {𝑏}∗. Hence 𝑋 − {𝑏}∗ is (ph-os) 

containing 𝑎 but not 𝑏. So 𝑋 is 𝑇0
𝑝ℎ

-space.   ■ 

Theorem 3.9: Every 𝑇1
𝑝ℎ

-space is 𝑇1
𝑝
-space. 

Proof: Let a space 𝑋 is 𝑇1
𝑝ℎ

-space and 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦. Then there exists (ph-o) sets 𝐴, 𝐵 such that 𝑦 ∉ 𝐴, 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, 𝑥 ∉ 𝐵. By 

(Theorem (2.10), [2]) every (ph-os) is p-open. Hence 𝑋 is 𝑇1
𝑝
-space.   ■ 

We have the following relations on 𝑇𝑖
𝑝ℎ

-space, 𝑖 = 0,1,2 see figure 1. 

 

Figure 1. Relation with separation axiom 

𝑻𝟏
𝒑𝒉 

𝑻𝟐
𝒑𝒉 𝑻𝟎

𝒑𝒉 

𝑻𝟏 

𝑻𝟎 𝑻𝟐 
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Results & Discussion 

In this research, it was proven that every open function is necessarily a ph-open function, with a counterexample provided to show that 

the converse is not true. Similarly, it was established that every ph-open function is a p-open function, while the converse also remains 

false, which was further supported by a counterexample. Regarding the concept of continuity, the results indicated that a continuous 

function is ph-o continuous, but the converse does not hold. Finally, within the context of Separation Axioms, the study concluded the 

following inclusion relations: Every 𝑻𝟎-space is 𝑻𝟎
𝒑𝒉

-space, every 𝑻𝟏-space is 𝑻𝟏
𝒑𝒉

, eery 𝑻𝟐-space is 𝑻𝟐
𝒑𝒉

, every 𝑻𝟏
𝒑𝒉

-space is 𝑻𝟎
𝒑𝒉

-space, 

every 𝑻𝟐
𝒑𝒉

-space is 𝑻𝟏
𝒑𝒉

-space, noting that all converse relations are not true. 

Conclusion 

This study presents an extension of the concept of h-open sets and their associated functions. We established inclusion relations between 

ph-open functions, open functions, and p-open functions, as well as between continuity and ph-o-continuity, confirming in each case 

that the converse is not true through counterexamples. Furthermore, a new set of ph-separation axioms (𝑇0 to 𝑇2) was constructed and 

investigated, which includes their standard counterparts and demonstrates the unidirectional inclusion relationships between them. 
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