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Detecting and quantifying the extent of brain tumors poses a formidable 

challenge in medical centers. Magnetic Resonance Imaging (MRI) has 

developed as a non-invasive brain cancers' primary diagnostic tool, 

offering the crucial advantage of avoiding ionizing radiation. Brain tumor 

manually segmented boundaries within 3D MRI volumes is an 

exceedingly time-intensive task, heavily reliant on operator expertise. 

Among brain tumors, gliomas stand out as the prevalent and highly 

malignant, significantly impacting patients' life expectancy, particularly at 

their highest grade. Recognizing the pressing need for a reliable, 

completely automatic segmentation technique to efficiently assess tumor 

extent, this study introduces a robust approach. A completely automated 

brain tumor segmentation method is proposed, leveraging U-Net-based 

deep convolutional networks. This approach underwent rigorous 

evaluation on the Multimodal Brain Tumor Image Segmentation BraTS-

19 dataset a widely recognized medical image analysis dataset featuring 

multimodal MRI scans of brain tumors, including glioblastoma, anaplastic 

astrocytoma, and lower-grade glioma, coupled with corresponding manual 

tumor segmentations. This dataset serves as a pivotal resource for 

advancing automatic brain tumor segmentation techniques and assessing 

their performance using metrics like the Dice score, which achieved 92% 

for entire tumor. Cross-validation results affirm the efficiency and promise 

of our method in achieving accurate segmentation. 
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Introduction 

Brain tumors, particularly primary 

malignant variants, represent a formidable challenge 

in the landscape of cancer [1,2]. Beyond their dismal 

prognoses, these tumors exert direct effects on 

cognitive performance and general quality of life 

[3,4]. Gliomas, which originate from brain glial 

cells, stand out as a predominant form of primary 

brain tumor in adults, loom large, accounting for 

nearly 80% of malignant cases [5,6]. Gliomas 

manifest as a diverse spectrum, encompassing slow-

growing 'low-grade' tumors with relatively favorable 

prognoses and the more dangerous, highly 

infiltrative high-grade gliomas (HGG), such as 

glioblastoma, necessitating immediate intervention. 

Some malignant brain tumors persist although 

substantial improvements in imaging, radiation, 

chemotherapy, and surgical techniques, such as 

high-grade glioblastoma and metastases, remain 

recalcitrant, boasting a 2.5-year relative prognosis 

cumulatively rate of merely 8% and a stark 2% at the 

decade mark [7]. Moreover, outcomes for Those 

who have LGG (low-grade gliomas) exhibit notable 

variability, with an average survival rate of 10 years 

hovering around 57% [8]. Recent research has 

underscored the potential of magnetic resonance 

imaging (MRI) characteristics in the early diagnosis 

and treatment planning of brain tumors [9,10,11]. 

Multimodal MRI protocols, incorporating various 

imaging sequences, are routinely employed to assess 

critical factors such as Blood-brain barrier (BBB) 

integrity, cellularity, and vascularity of brain 

tumors. This strategic utilization of diverse image 

contrasts enhances the understanding of tumor 

biology. Typical MRI protocols for brain tumor 

evaluation commonly involve T1-weighted, T2-

weighted (including Fluid-Attenuated Inversion 

Recovery, abbreviated as FLAIR), and gadolinium-

enhanced T1-weighted imaging sequences. These 

structural MRI images play a substantial role in 

diagnosing most cases [12,13]. Image segmentation 

emerges as a pivotal step in extracting valuable 

insights from MRI images for brain tumor studies. It 

serves multiple critical purposes: 

1. Precise delineation of the brain tumor 

extent: This effectively removes any confusing 

structures originating from other brain tissues, thus 

facilitating accurate sub-type classification and 

informed diagnosis. 

2. Essential in radiotherapy or surgical 

planning: It ensures meticulous outlining of the 

brain tumor while excluding surrounding healthy 

tissues to avert inadvertent damage to language, 

motor, and sensory function sites during therapy. 

3. Efficient monitoring of brain tumor 

recurrence: This is achieved through segmentation 

of longitudinal MRI scans. 

Presently, clinical practice still heavily relies on 

manual segmentation performed by human 

operators. This labor-intensive manual process often 

involves slice-by-slice procedures, yielding results 

significantly influenced by operator experience and 

subjective judgment. Achieving reproducible 

results, even when performed by the same operator, 

remains a daunting challenge. In the context of 

multi-institutional, multimodal, and longitudinal 

clinical trials, there is a growing demand for 

Completely automated, unbiased, and consistent 

segmentation methods. In spite of recent 

advancements in both semi-automated and fully 

automated algorithms for brain tumor segmentation, 

numerous formidable challenges endure, chiefly 

stemming from the substantial variation observed 

among brain tumors in terms of size, shape, 

regularity, location, and their diverse appearances, 

including Contrasting uptake, image equality, and 

texture [11, 13]. Additionally, potential complexities 

in brain tumor segmentation arise from factors such 

as the intact BBB in LGG cases, leading to often 

invisible or indistinct tumor boundaries, and the 

irregular boundaries and discontinuities associated 

with aggressive tumor infiltration in high-grade 

gliomas (HGG) [14]. Furthermore, the visibility of 

various tumor subregions and types often 

necessitates the consideration of multimodal MRI 

data, posing challenges in co-registering sequences 

acquired at different spatial resolutions. Finally, the 

typical clinical MRI images' balance between in-

plane and inter-slice resolution can impact 

segmentation accuracy due to Insufficient ratios of 

signal to noise SNR and the partial volume impact. 

Accurate segmentation of tumors within medical 

images holds paramount significance, offering 

critical insights essential for cancer analysis, 

diagnosis, treatment planning, and disease 

progression monitoring. In light of the challenges 

and complexities presented by brain tumors, this 

study endeavors to advance the Innovative in brain 

tumor segmentation, leveraging the power of deep 

learning and advanced imaging techniques. The 

objective is to develop a completely automated, 

objective, and reproducible segmentation method 

that addresses the intricacies of brain tumor diversity 

and aids clinicians in providing timely and accurate 

diagnoses, treatment planning, and patient 

management. 

 

Literature Review 

 

The preceding investigations into brain tumor 

segmentation can be broadly classified into the 

following categories: 

 

Unsupervised Learning-Based Approaches: In 

earlier studies, researchers delved into unsupervised 

learning, focusing on clustering techniques to 

segment brain tumors. Hsieh et al. [15], for instance, 

combined fuzzy clustering and region-growing 

methods to delineate tumors based on T1-weighted 
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and T2-weighted sequences, yielding an accuracy of 

73%. Another approach, featured in [16], introduced 

a multi-stage fuzzy c-means framework for 

multimodal MRI-based tumor segmentation, 

showcasing promising outcomes. However, it's 

worth noting that this framework was tested on a 

limited dataset. Recent work [17] assessed various 

clustering algorithms for glioblastoma 

segmentation, highlighting Gaussian hidden Markov 

random fields as superior to k-means, fuzzy k-

means, and Gaussian mixture models. Yet, the best-

performing algorithm in this study achieved an 

accuracy of only 77%. 

Supervised Learning-Based Techniques: In 

contrast, supervised learning methods demand 

labeled training data to construct classification 

models for segmenting brain tumors. Wu et al. [18] 

applied super-pixel features within a conditional 

random fields framework, but the results exhibited 

significant variation among different patient cases, 

particularly underperforming in low-grade glioma 

(LGG) images. An alternative approach, presented 

in [19], harnessed extremely randomized forests to 

classify appearance and context-based features, 

achieving an 83% Dice score. More recently, a study 

[20] combined extremely randomized trees 

classification for a single FLAIR sequence-based 

image using super-pixel-based oversegmentation 

MRI scans, resulting in an impressive 88% overall 

Dice score for complete tumor segmentation in both 

LGG and high-grade glioma (HGG) cases. 

However, tuning super-pixel size and compactness 

remained a challenge. 

Deep Learning-Based Innovations: Recent strides 

in deep learning have propelled brain tumor 

segmentation, relying on convolutional neural 

networks (CNNs) to automatically learn intricate 

features directly from data. These deep CNNs have 

demonstrated remarkable success in the Brain 

Tumor Image Segmentation (BRATS) competition, 

consistently ranking at the top [21,22]. The power of 

deep CNNs arises from their layered architecture, 

involving multiple convolutional layers that learn 

progressively complex features. Nonetheless, 

several challenges persist, including the inherently 

abnormal nature of tumor segmentation, the ongoing 

difficulty in accurately segmenting low-grade 

gliomas, limitations in delineating core and 

infiltrative tumor regions, and the demand for more 

computationally efficient methods. 

Clustering Methods and Unsupervised Learning: 

Early endeavors in brain tumor segmentation 

explored unsupervised learning approaches, where 

researchers aimed to cluster similar data points to 

segment tumors. Notably, Hsieh et al. (2014) fused 

fuzzy clustering with region-growing techniques to 

achieve a 73% segmentation accuracy based on T1-

weighted and T2-weighted sequences. A multi-stage 

fuzzy c-means framework was introduced in [16] to 

segment brain tumors from multimodal MRI, 

showing promise despite its evaluation on a limited 

dataset. Additionally, [17] undertook an evaluation 

of various clustering algorithms for glioblastoma 

segmentation, highlighting the superiority of 

Gaussian hidden Markov random fields. 

Supervised Learning and Classification Models: 

Supervised learning-based methods emerged as a 

prominent avenue, necessitating labeled training 

data for constructing classification models. Wu et al. 

(2015) harnessed super-pixel features within a 

conditional random field’s framework for brain 

tumor segmentation, with performance variations 

observed among different patient cases. Extremely 

randomized forests were employed in [19] to 

classify appearance and context-based features, 

achieving an 83% Dice score. A recent study [20] 

combined this classification approach with super-

pixel-based over-segmentation for FLAIR 

sequence-based MRI scans, resulting in an 

impressive 88% Dice score for complete tumor 

segmentation. 

Deep Learning Revolution: The advent of deep 

learning marked a transformative shift in brain 

tumor segmentation. Deep convolutional neural 

networks (CNNs) have taken center stage, 

automatically learning complex features directly 

from data. These deep CNNs have consistently 

dominated the Brain Tumor Image Segmentation 

(BRATS) competition [21,22]. The strength of deep 

CNNs lies in their multi-layered architecture, 

leveraging convolutional layers to capture 

progressively intricate features [23,24]. 

Nevertheless, several challenges persist, including 

the unique nature of tumor segmentation, the 

ongoing difficulty in segmenting low-grade gliomas, 

limitations in delineating core and infiltrative tumor 

regions, and the imperative need for more 

computationally efficient methods. 

 

Methodology 

 

The research hinged on the 2019 Brain 

Tumour Segmentation Challenge (BraTS) dataset, a 

cornerstone in advancing the field of brain tumor 

segmentation [25,26]. This dataset was thoughtfully 

partitioned into a training set, where the proposed 

models underwent intensive training, and a 

validation set, meticulously crafted to serve as the 

benchmark for evaluating the ensemble approach 

[27,28]. Within the training set, we had a 

comprehensive cohort comprising 259 patients 

diagnosed with high-grade gliomas, alongside an 

additional 76 patients afflicted by low-grade 

gliomas. These data points served as the backbone 

for the proposed model training and were adorned 

with painstakingly crafted annotations provided by 

domain experts, ensuring the reliability of the 

ground truth labels. The validation set, distinctively, 

encompassed 125 cases, bearing an air of mystery as 

the grades of these tumors were deliberately kept 
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undisclosed from the public [29,30]. This multi-

institutional dataset was a result of collaborative 

efforts from 19 different contributors, making it a 

testament to the collaborative spirit in medical 

research. It boasted a rich variety of multimodal 

MRI scans for each patient, including essential 

sequences like T1, T1 contrast-enhanced (T1ce), T2-

weighted (T2), and Fluid Attenuated Inversion 

Recovery (FLAIR). These sequences, each with its 

unique information, played a crucial role in the 

segmentation of various tumoral subregions. To 

ensure the quality and consistency of the dataset, this 

paper embarked on an extensive preprocessing 

journey. This involved the meticulous removal of 

extraneous elements through a process known as 

skull-stripping. Subsequently, researcher has been 

implemented alignment procedures to ensure the 

scans conformed precisely to a standardized 

anatomical template. The scans were further 

subjected to resampling, rendering them at a uniform 

resolution of 1mm³. Each sequence had volumetric 

dimensions of 240 × 240 × 155, providing an 

extensive view of the brain's internal structures. In 

Figure 1, we present a visually informative snapshot 

from the training set. It's essential to emphasize that 

the research methodology adhered rigorously to the 

exclusive use of the BraTS-19 dataset, underscoring 

the commitment to maintaining data integrity and 

avoiding external data sources. Furthermore, it's 

pertinent to note that the BraTS-19 test set was 

accessible only to registered challenge participants, 

leading us to report the test results solely on the 

BraTS-19 validation set. The  analysis embarked on 

a comprehensive exploration, commencing with an 

in-depth examination of the segmentation results 

accomplished by the proposed network on this 

validation set. Subsequently, we ventured into a 

meticulous comparative assessment, pitting the 

results against established state-of-the-art 

architectures to validate the innovation and efficacy 

of the proposed approach. 

 

 
Figure 1. Example of the BraTS-19 Training Dataset. 

From left to right, show the axial slice of MRI images in 
Flair, T1, T1ce and T2. 

 

Data augmentation is a strategic tool we employed 

with precision in this study, driven by the 

overarching goal of enhancing the network's 

performance. This technique operates by 

ingeniously generating a diverse array of training 

data from the original dataset, strategically enriching 

the learning process. The approach to data 

augmentation was a comprehensive one, 

incorporating an array of sophisticated methods to 

infuse versatility into the training data. These 

methods included fundamental operations like 

flipping, rotation, shift, and zoom. While these 

operations did introduce displacement fields within 

the images, it's crucial to note that they were 

meticulously calibrated to preserve the fundamental 

shapes and structures inherent to the brain tumor 

images. In essence, the data augmentation strategy 

was a meticulously orchestrated symphony, fine-

tuned to bolster our network's capacity to generalize 

and learn from a more expansive and diverse dataset, 

all while respecting the inherent shapes and 

characteristics of the original images. 

The proposed network architecture, inspired by the 

U-Net model which is shown in Figure 2, has been 

substantially enhanced to bolster its capacity to 

capture intricate features vital for precise 

segmentation. It comprises an extended down-

sampling (encoding) path and a more robust up-

sampling (decoding) path. In the down-sampling 

path, we've expanded the network to include a total 

of seven convolutional blocks, each housing a pair 

of convolutional layers. These layers utilize 3×3 

filters, maintain a stride of 1 in both directions, and 

employ rectifier activation functions. This 

expansion significantly augments the number of 

feature maps, increasing it to an impressive 2048. To 

facilitate the down-sampling process, we've 

integrated max-pooling with a 2×2 stride at the end 

of each block, with the exception of the final one. 

This orchestrated progression effectively reduces 

the size of feature maps from an initial 240×240 

down to a more compact 15×15. Conversely, in the 

up-sampling path, each block commences with a 

deconvolutional layer featuring 3×3 filters and a 2×2 

stride. This operation efficiently doubles the size of 

feature maps in both dimensions while halving the 

amount of feature maps. Consequently, the feature 

maps expand in size from 15×15 to a comprehensive 

240×240. Within each up-sampling block, two 

convolutional layers work cohesively to decrease the 

number of feature maps in the combination of 

deconvolutional feature maps and those originating 

from the encoding path. Moreover, we have adjusted 

various critical parameters. Zero-padding is 

strategically employed to ensure consistent output 

dimensions across all the CNN layers in both the 

down-sampling and thw up-sampling tracks. 

Additionally, the final segmentation output is 

derived through a 1×1 convolutional layer, 

efficiently reducing the amount of feature maps to 

two, signifying the foreground and background 

segmentation. It's worth highlighting that the 

network avoids the use of fully connected layers, 

opting for a more streamlined architecture that 

prioritizes efficiency and accuracy in the context of 

brain tumor segmentation. These enhancements 

empower the proposed model to capture intricate 
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details, making it an invaluable tool in the realm of 

medical image analysis. During the training phase, 

we employed a cross-entropy-based cost function, a 

fundamental choice for training deep neural 

networks. To optimize this cost function regarding 

the model's parameters, we harnessed the power of 

the Adaptive Moment Estimation (Adam) optimizer. 

Adam is a widely used optimization technique that 

leverages both the first and second moments of 

gradients to iteratively update and fine-tune the 

model's parameters. The specific configuration for 

the Adam optimizer involved setting a learning rate 

of 0.00001 and a maximum of 150 training epochs. 

To initiate the network, we initialized all weights 

from a normal distribution with a mean of 0 and a 

standard deviation of 0.01, while biases were 

initialized to 0. 

 

 
Figure 2. The architecture of U-Net model. 

 

 

Experimental Work and Result  
 

To evaluate the performance of the suggested 

U-Net model, we conducted extensive tests  using 

the BraTS-19 dataset. Additionally, we performed a 

sequence of module validation experiments was 

conducted to confirm the effectiveness of each 

module introduced in this paper. We divided the 

BraTS-19 dataset into a training data (80%) and a 

testing data  (20%), resulting in 268 training cases 

and 67 cases for testing. Beyond the Dice 

coefficient, additionally, we considered three 

additional essential evaluation metrics: Sensitivity, 

Specificity, and Hausdorff distance (Hausdor_95), 

as mandated by the competition which defined in the 

below equations. The model's performance, which is 

shown in Table 1, achieving Dice scores of 0.920, 

0.90, and 0.865 on the entire tumor, central tumor, 

and enhanced tumor, respectively.  

In the assessment, we employ a set of metrics to 

evaluate the model's performance. These metrics 

assist in assessing the accuracy of the predictions 

and their alignment with the ground truth: 

 

True Positive (TP): This represents the count of 

correctly identified positive pixels. 

False Positive (FP): It signifies the count of 

erroneously identified positive pixels. 

- True Negative (TN): This measures the 

count of correctly identified negative 

pixels. 

- False Negative (FN): It denotes the count 

of mistakenly identified negative pixels. 

 

𝐷𝑖𝑐𝑒 =  
2𝑇𝑃

𝐹𝑃 + 2𝑇𝑃 + 𝐹𝑁
       … (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
       … (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
      … (3) 

𝐻𝑎𝑢𝑠(𝑇, 𝑃) = max{sup 𝑡 ∊ 𝑇 inf 𝑝 ∊
𝑃𝑑(𝑡, 𝑝), sup 𝑝 ∊ 𝑃 𝑖𝑛𝑓 𝑡 ∊ 𝑇𝑑 (𝑡, 𝑝)}   … (4)  

 

We utilize 't' to represent the pixels within the 

ground-truth regions and 'p' for those within the 

predicted regions. The function 'd(t, p)' computes the 

distance between these pixels. The evaluation 

metrics encompass: 

 

- Dice Coefficient: This metric evaluates the 

overall voxel-wise overlap between the 

predicted and ground-truth regions. 

- Sensitivity: It assesses the model's capacity 

to accurately identify positive regions. 

- Specificity: This metric gauges the model's 

ability to correctly exclude negative 

regions. 

- Hausdorff Distance: It quantifies the 

maximum boundary separation between 

the predicted and ground-truth segmented 

regions. 

- Hausdorff95: This metric provides insights 

into the 95% quantile of the surface 

distance distribution. 

 
Table 1: The model's performance 

          Type 

Metric 

Entire 

Tumor 
Central 

Tumor 
Enhanced 

Tumor 

Dice 0.920 0.90 0.865 
Sensitivity 0.892 0.881 0.865 
Specificity 0.995 0.993 0.991 
Hausdor_95 5.431 7.334 5.210 

 

In Figure 3, each image comprises six columns, 

representing an axial MRI slice acquired in Flair, T1, 

T1ce, and T2 modalities, which serve as inputs for 

the proposed model. Additionally, it displays the 

ground truth (GT) and the model's prediction labels. 

Notably, the proposed model's segmentation results 

exhibit a remarkable resemblance to the Ground 

Truth. The model adeptly labels pixels in regions 

marked as enhancing, demonstrating precise 

identification. Moreover, the model effectively 

discerns pixels in areas without enhancing labels, 

contributing to a notable reduction in False Positives 
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(FP). These results substantiate the robustness and 

efficacy of the proposed U-Net model in the task of 

brain tumor segmentation, showcasing its potential 

for enhancing medical image analysis. 

 

 
Figure 3. Example of segmentation results on the 

BraTS-19 Dataset. 

 

Conclusion 

          This paper introduces a robust brain tumor 

segmentation approach based on the U-Net 

architecture. Using the BraTS-19 dataset, extensive 

experiments were conducted to validate each 

proposed module. The U-Net model achieved 

remarkable performance, with high scores in various 

metrics. Visual inspections confirmed its accuracy. 

A comprehensive set of evaluation metrics was 

employed, with the Dice coefficient being a primary 

metric. This work offers an advanced solution for 

brain tumor segmentation with potential clinical 

applications. The use of U-Net architecture, rigorous 

evaluation, and extensive experiments establishes 

the approach's effectiveness, promising improved 

medical applications. 
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