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ABSTRACT

Denial of service and Distributed denial of service (Dos/DDos) attacks
continue to be one of the most significant dangers in cybersecurity. Many
efforts are being put into developing defenses against these types of
attacks. The tools used by attackers to perform these types of attacks
increase day-to-day. Thus, a countermeasure is necessary. For this reason,
this thesis utilized one of the most recent datasets (CSE-CICIDS2018 and
CIC-DD0S2019) containing most Dos/DDosS attacks. This study proposed
a framework based on Machine Learning for detecting denial-of-service
(DoS) and distributed denial-of-service (DDoS) attacks. The framework
comprises three main modules: feature selection method using Random
Forest—Recursive Feature Elimination (RF-RFE), handling the
Imbalanced class distributions using Synthetic Minority Oversampling
Technique (SMOTE), and classification. This study used five classifiers
to make comparisons that include Random Forest (RF), Naive Bayes
(NB), Logistic Regression (LR), and Linear and Quadratic Discriminant
Analysis (LDA, QDA). Framework empirical findings reveal that the RF-
RFE_SMOTE_RF outperformed all other models by obtaining an
accuracy of 100% for CSE-CIC-1DS2018 and 0.99% for CIC-DD0S2019.
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1. Introduction

To this day, DoS attacks remains an intractable

issue facing the field of network security. The
danger posed by DoS and DDoS attacks continues
to occur, and the number of these attacks rises
annually despite the existence of a multitude of
investigative and preventative schemes [1]. DDoS
attacks are a real threat nowadays and in the future
as users and loTs end nodes continue to grow
exponentially in numbers. Moreover, DDos are
becoming more common every day. According to a
report by Kaspersky, DDoS attacks in 2022 spotted
57,116 attacks in third quarter of 2022 Year [2]. And
it was 45.95% in second quarter of 2022 Year, by
the third quarter of that year, it had dropped to
39.60%. This ratio rose from 38.690% in Q3 2021
to 53.533% in Q3 2022 throughout the globe. This
ratio grew from 38.690% in Q3 2021 to 53.533% in
Q3 2022 on a global scale. There was a 60% rise in
malicious DDoS assaults in first half of 2022
compared to the same time in 2021 as reported of
Secure List by Kaspersky [3]. This report
demonstrates the rising demand for efficient
frameworks and the necessity for an enhancement to
the security mechanisms of DDoS counter measure.
Performing DDoS attacks have become much easier
and more cost-effective despite their increasing
complexity [4]. DDoS assaults may be quickly
organized at a minimal cost by the attackers simply
by inputting  the target addresses, and the
organization mechanisms can be easily disabled.
DDosS attacks are so easy and cheap to do, yet they
pose a big threat to businesses on the internet. DoS
attacks are used to block access to a system by users
who are legitimately authorized to use it. In DDoS,
the attackers use a variety of sources of dispersed
attacks to achieve the same goal which is block
accesses.
In this study, the authors suggest a machine
learning-based framework for identifying DoS and
DDoS attacks with network traffic. Protecting a
system from attackers by manually monitoring
network traffic is very time-consuming; hence, an
intelligent security framework that can identify
attacks is required. This study aims to improve the
performance of the detection of these attacks and
achieve better accuracy. So, this study suggests
using SMOTE to resolve class imbalance and using
the warped filter method based on RF-RFE to select
the best features to hel the model perform well and
reduce dimensionality.

The paper is organized into five sections.
Related work is presented in Section 2. Whereas,
Methodology are explained along with Dataset
Description, Data preprocessing, Feature Selection,
SMOTE,Normalization, and Performance
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Evaluation.  Section 4 discuss Results, Finally,
Section 5 Concludes the framework as a
countermeasure.

2. Related works

The researcher, M. Alkasassbeh et al. [5],
gathered a novel dataset which consists of 27
features and 5 different classes. This dataset was
intended to be employed in various types of network
attacks. The algorithms MLP (Multi-Layer
Perceptron), NB, and RF were used for classification
of DDOS attack. confusion matrix used to figure out
how well the models did. achieved an accuracy of
98.63% for MLP algorithm, 98.02% for Random
Forest algorithm, and 96.91% for Naive Bayes
algorithm.

The researcher, V. Sharma et al. [6], deployed
the machine learning methods of SVM, NB, and RF
to the Snort haven dataset, classifying the data based
on its characteristics and of four categories
implemented in the WEKA. confusion matrix used
to evaluate the study provided an accuracy of 99.7%
for the SVM, 97.6% for the RF, and 98.0% for the
NB.

W. Bhaya and M. Ebadymanaa, in 2017 [7], the
researchers, utilized many unsupervised data
analysis methods. The technique employed in this
work to identify a DDoS attack is windowing on
incoming packets utilizing DM algorithms
combining CURE with a clustering model. Used the
CAIDA2008, CAIDA2007, and DARPA2000
datasets in their implementation. The results showed
a detection rate of 96.29%, an accuracy of over 99%,
and FAR 0%.

Abdurrahman and M. K. lbrahim [8],
suggested a hybrid intrusion detection system for the
detection of DDoS attacks in 2018. Based on the
CICIDS2017 dataset, this dataset contains both
DDosS attacks and normal traffic. RF, C5.0, NB, and
SVM algorithms were used for the classification of
DDoS attacks. The confusion matrix is used to
determine which models have the best accuracy
(86.80% for the RF, 86.45% for the C5.0, and 99%
precision for both the
RF and the C5.0), but the lowest FAR is 0.05% for
the RF, 0.046% for the C5.0, and the highest FAR is
75% for the SVM.

In 2021, N. M. Yungaicela-Naula et al. [9],
utilize machine learning and deep learning
algorithms such as GRU, RF, and LR for DDoS
attack detection through depending on the
CICD0S2017 and CICDD0S2019 datasets and



achieved an accuracy of 0.99% on new test
data.CICDD0S2019 datasets and achieved an
accuracy of 0.99% on new test data.

3. The Description of the Adopted Dataset

This subsection describes the datasets CSE-
CIC-IDS2018 and CIC-DD0S2019 that were select
to reflect the performance of the proposed
framework.We utilized this dataset to train and test
on DDoS detection approach. CSE-CIC-11DS 2018
was created by Sharafaldin et al. [10], in2018. It
provides many attack behaviors that represent
common attack families. The attacks include Botnet
attacks, DoS attacks, Brute-force attacks, DDoS
attacks, Web attacks, and infiltration. The CSE-CIC-
IDS2018 database includes 84 attributes created by
the CICFlowMeter tool [11]. Sharafaldin et al. [12]
also created CICDD0S2019 dataset, in 2019. It is a
DDoS attack dataset. The total number of
CICDD0S2019 instances is 500 63112 out of these
are 56863 instances of normal class and 50006249
DDosS attack instances. The training version of the
dataset carried out twelve different DDoS attacks,
including NTP, DNS, LDAP, MSSQL, NetBIOS,
SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN,
and TFTP. While, the training version of the dataset
carried out seven different DDoS attacks, including
PortScan, NetBIOS, LDAP, MSSQL, UDP, UDP-
Lag, and SYN. The CICD0S2019 dataset includes
88 attributes, 84 of which were created using the
CICFlowMeter tool, while Sharafalding et al created
the other four. The paper focuses on two categories
of Dos and DDos attacks.

In this paper , we utilized three files of
CSE-CIC-IDS2018 dataset while in CIC-
DD0S2019 dataset we utilized six files because
content on the DoS/DDoS attacks. In CSE-CIC-
IDS2018, we merges three files in a single combined
file and feeds the combined file to the RF-RFE-
SMOTE framework. After merges process the files,
CSE-CIC-IDS2018 become contains 3,145,724
records, including 1,342,042 instances for
DoS/DDoS attacks and 1,803,682 instances for
Benign as shown in table 1. The attacks included
DDoS-HOIC, DoS-Hulk, DoS SlowHTTPTest,
DoS-GoldenEye, DoS-Slowloris, and DDoS-LOIC-
UDP. Whereas for CIC-DD0S2019 dataset, we
merges six files in a single combined file. After
merges process the files, CIC-DD0S2019 become
contains and contains 5111159 instances, including
5065529 DDoS attack instances and 45630 Benign
instances as shown in table 2 .Hence, the combined
file contains Syn, NetBIOS, UDP, LDAP, Portmap,
MSSQL, UDPLag types of attacks. Figures 1 and 2
highlight the merging process for the two datasets.
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Figure 1. Merged Files CSE-CIC-1DS2018 dataset
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Figure 2. Merged Files of CIC-DDoS 2019 dataset

Table 1. Details of instances in the CSE-CIC-

IDS2018 dataset
Benign 1803682
DDOS attack-HOIC 686012
DoS attacks-Hulk 461912
DoS attacks-SlowHTTPTest 139890
DosS attacks-GoldenEye 41508
DoS attacks-Slowloris 10990
DDOS attack-LOIC-UDP 1730
Total 3145724

Table 2. Details of instances in the CIC-DD0S2019

dataset
Benign 45630
LDAP 841586
MSSQL 24392
NetBIOS 1251410
Portmap 186960
Syn 1624663
UDP 1134645
UDPLag 1873
Total 5111159

4. Methodology of the Proposed Frame
Work

This section presents a brief description of the
framework. Figure 3 highlights the DoS/DDoS
attack detection framework. The framework has
three phases. The first phase takes care of feature
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particular dataset for better training of the machine-
learning module.

selection by applying RF-RFE for feature selection
and feature reduction, the second phase handled the
Imbalance class using SMOTE, and the third phase
is the classification phase.

Feature

| Classificati
selection

on

Figure3. Proposed DoS/DDoS attack detection
framework

In which the framework tests various classifiers
for the best classification performance evaluation.
Figure 4 details the proposed framework along with
all the adopted approaches .

CSE-CIC-IDS2018 ‘ | CIC-DDoS2019

Datasets

Preprocessing

Cleaning

Drop features

Encoding

Training Dataset

T-SNE

j

Dimensionality
Reduction
Feature Selection
(RF-RFE)

o

Imbalance Process

Normalization |
Classifiers
RF, LR
NB. LDA, LQA

4

Performance Evaluation ‘

Accuracy, Precision, Recall, F1-Score, and AUC
ROC

Figure 4. Brief details of Proposed DoS/DDoS attack
detection Framework

4.1 Preprocessing

Data preprocessing is considered one of the
essential steps in any machine-learning approach.
This step is usually done at the very first stage. In
general, to enrich the data quality and supports precise
decision-making, cleaning, dropping, encoding, and
splitting are included in the preprocessing of a

32

Cleaning: it is used to fix and remove any
incomplete information in a certain dataset. The
adopted datasets contain a large amount of
missing (NaN) and infinity (Inf) values. Thus,
the proposed framework cleans these by
removing (NaN) and infinity (Inf) values.

Dropping: for each CSE-CIC-1DS2018 and CIC-
DD0S2019 dataset we drop features such as
"Timestamp™ which are of little help in training
our neural network, and Some of the CSV files
contain the Features "Unnamed: 0", "Flow ID",
"Source IP", "Source Port" and "Destination IP",
these features are not accessible in any of the
other CSV files, hence they have been deleted
from the files. The Flow ID, Source IP, and
Destination IP are non-numeric data types. Thus,
they are not suitable for machine learning
algorithms in their current form, but the loss of
the model. The features in CSE-CIC-1DS2018
dataset fall after dropping from 83 to 77 features
and the features and CIC-DD0S2019 dataset
become after dropping from 87 to 81 features.

Encoding: is frequently employed to deal with
categorical variables. Each label is given a
unique integer. The CSE-CIC-1DS2018 dataset
includes seven various types of attacks labeled,
six attacks and normal. To prepare it for machine
learning, it is numbered from0 to 6.in the other
CIC-DD0S2019 dataset has been labelled with
eight different types of attacks, seven attacks and
benign, it is numbered from 0 to 7.

e  Splitting: itis used to split dataset into (Train
and Test) to evaluate the performance of the
model. The proposed framework import The
propoosed framework imported the Train
test split function from the "Sklearn
Library" in python and used70 percent of
data for training and 30 percent for the test.
This percentage (70:30) is considered
standard among machine learning
developers.
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~40 1

4.2 t-distributed stochastic
embedding (t-SNE)

neighbor

To give deep insight into the datasets, we
utilize t-SNE [13] to visualize both CSE-CIC-
IDS2018 and CIC-DD0S2019. As plotted in figures 5
and 6, the attack instances in CSE-CIC-IDS2018 are
less than the normal instances. Thus, it is easier for
specific attack behavior to remain hidden.
Furthermore, for CIC-DDoS 2019, the normal
instances are less than the attack instances, which
causes confusion among them and makes it
increasingly  difficult for traditional intrusion
detection technology to detect attacks.

® DoS attacksSkoalons
& DDOS sltack-LOIC-UDP

® Benign
& DoS altacks Hek
®  DOS Attacks-SiowH TRt

® DDOS attack HOK
® DoS atlacks-GoldenEye

-0

Figure 5. CSE-CIC-IDS2018 Visualization Using
T-SNE
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Figure 6. CIC-DD0S2019 Visualization Using T-
SNE

3.4 Feature Selection

The primary FS task is finding the original
dataset's most critical features or groups. Some
attributes (features) are necessary for DoS/DDoS
detection, while some others may just be noise,
harming the training speed and accuracy. Training
the classifier using the whole set of features has been
demonstrated to reduce model performance [14]. In
this work, decreased the feature space dimension by
combining RF algorithm with RFE “Random
Forest—Recursive Feature Elimination algorithm
(RF-RFE)”. It is assumed tthat data redundency is
eliminateed and produces moree compact featuree
subsets. The steps of the RF-RFE approach are
shown in figure 7. First, we utilised the training data
to train the model with RF algorithm, and We
determined an importance per each feature
depending on to its classification contribution..
Next, the features were ranked from most important
to least important. At this step, feature rankings were
determined. Lastly, we eliminated a lowest
important feature and retrained RF model with the
updated features, and acquired classification results
with the new feature set. This process is
implemented in an iterative procedure until the
feature set is empty. After RF-RFE, a list of
performance measurement values corresponding to
each subset was produced. Based on the list of
values, we explored the decision variant used for
subset selection. Based on this, 39 best features
Group Set (39-RF-RFE) was selected in CSE-CIC-
IDS2018 and 40 best features Group Set (40-RF-
RFE) in CIC-DD0S2019 as shown in tables 3 and 4.
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Input Features
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Train Features

Y

Gain the importance of every feature
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Remove the least important features

Y

Calculate the classification
accuracy of feature subset

v

NO

Feature subset is
empty or not?

Figure 7. The Main Procedure of the Recursive
Feature Elimination (RFE) Method

Table 3. The 39 Features Set CSE-CIC-1DS2018

No | FeatnreName No | FeatureName

1 | DstPort 21 | BwdHeaderLen

2 | Flow Duration 22 | Fwd Phts/s

3 | Tot Bwd Pkis 23 | Bwd Pkis/s

4 | TotLen Fwd Phts 24 | Pkt Len Max

5 | TotLen Bwd Pkts 25 | Pkt Len Mean

6 | Fwd Pkt Len Max 26 | PktLenStd

7 | Fwd Pkt Len Mean 27 | PktLenVar

§ | Bwd Pkt Len Max 28 | PSHFlag Cnt

9 | Bwd Pkt Len Mean 29 | ACK Flag Cat

10 | Bwd Pkt Len Std 30 | Pkt Size Avg

11 | Flow Bytsfs 31 | Fwd Seg Size Ave
12 | Flow Pkts/s 32 | Bwd Seg Size Avg
13 | FlowIAT Mean 33 | SubflowFwd Pkts
14 | FlowIAT Max 34 | SubflowFwd Byts
15 | FlowIAT Min 35 | Subflow BwdPkts
16 | Fwd IAT TotFwd 36 | SubflowBwdByts
17 | IAT Mean 37 | Init Fwd Win Byts
18 | Fwd IAT Max 38 | Init Bwd Win Byts
19 | Fwd IAT Min 39 | Fwd Seg Size Min
20 | Fwd Header Len

34

Table 4. The 40 Features Set CIC-DD0S2019

No | FeatureName No | FeatureName

1 | Destination Port 21 | Bwd Packets/s

2 | Protocol 22 | MinPacket Length

3 | FlowDuration 23 | Max Packet Length

4 | Total Fwd Packets 24 | Packet Length Mean

5 Total Length of Fwd Packets 25 | Packet Length Std

6 | FwdPacket Length Max 26 | Packet Length Variance
T | Fwd Packet Length Min 27 | ACK Flag Count

8 Fwd Packet Length Mean 28 | URG Hag Count

9 | Pwd Packet Length Std 29 | CWE Flag Count

10 | Flow Bytes/s 30 | Average Packet Size

11 | Flow Packets/s 31 | Avg Fwd Segment Size
12 | FlowIAT Mean 32 | Fwd HeaderLength.1
13 | FlowIAT 5td 33 | SubflowFwd Packets
14 | FlowIAT Max 34 | Subflow FwdBytes

15 | FlowIAT Min 35 | Subflow Bwd Packets
16 | FwdIAT Total 36 | Init Win bytes forward
17 | FwdIAT Mean 37 | Tnit Win_ bytes backward
18 |FwdIAT Max 38 | act data pkt fwd

19 | FwdIAT Min 39 | min seg size forward
20 | Pwd Header Length 40 | Inbound

3.5 Synthetic Minority Oversampling
Technique (SMOTE)

Imbalance  datasets can lead to
misclassification problems. Thus, it will affect
machine-learning models and degrade their
performance. To overcome this problem, developers
oversample the minority class[15]. The proposed
framework applies SMOTE in the training set
instances. Tables 5 and 6 show the number of
training instances before and after using SMOTE
and testing instances, respectively. Figures 8 and 9
shows the difference between the training phase
without SMOTE and with the SMOTE. The training
set before SMOTE in CIC-IDS 2018 contains
2,202,006 instances, whereas after SMOTE contains
8839628 instances, and the testing set consists of
943718 instances. The training set before SMOTE
in CIC-DDoS 2019 contains 3577811 instances, the
training set after SMOTE contains 9100096
instances, and the testing set contains 1533348
instances.




Table 5. Distribution of the classes in the CIC-IDS
2018 dataset before and after SMOTE

Benign Benign 1269804 540878 1262804 | 540878
DoSattack | DoSHulk 479781 206231 126804 206231
Do3- V12t 12387 1262804 | 1307
SlowHTTPTest
DoS-GoldenEye 303087 138325 162804 138825
DoS-Slowloris 98309 41581 1262804 41581
DoSattack | DDOSLOIC- 70 7281 1262804 7281
UP
DDoS-HOIC 1195 535 1262804 535
Total / 2202006 w3718 939608 | 943713
Table 6. Distribution of the classes in the CIC-
DD0S2019 dataset before and after SMOTE
Benign | Benign 31876 13754 137512 13754
DDoS | LDAP 588798 250788 1137512 250788
atack | MSSQL 16994 7398 1137512 7398
HetBIOS 875678 75T 137512 3571
Portmap 13117 55843 1137512 55843
Son 1137512 437151 1137512 437151
UDP 794350 40095 1137512 240095
UDPLag 1326 947 1137512 547
Total ! 3577811 1537348 9100096 1533348
® Training Set before SMOTE ® Training Set after SMOTE
a0
1000000
800000
600000
400000
‘2'\\\\“3 -‘\\‘&r 4\€‘L-} \»‘«éﬁi ~‘\ﬁ‘\- \\0\L \\‘Q
¢ @ & & &
,-\n\’ \‘\\._, N 9 Bb_f\
& 9
Q

Figure 8. SMOTE on training CIC-IDS 2018
dataset

® Training Sef before SMOTE ~ # Training Sel after SMOTE

1200000

1000000
800000
600000
400000
200000
- . R

Benign LDAP MSSQL NetBIOS  Portmap Syn UpP UDPLag

Figure 9. SMOTE on training CIC-DD0S2019
dataset

3.6 Normalization

In  this  subsection, we employ
normalization to re-scale thee dataset's features
depending on each feature's minimum and
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maximum values. A data was normalized to smaller
range using a MinMaxScaler between (0, 1). The
machine learning models' calculations become
overly time- and space-intensive since each column
in the data includes a varied range of data. The data
is represented in a standard scale to reduce this
burden (computations and time-consuming) by
changing the values from the original scale to the (0,
1) scale. X"scale" computes as:

Xi—Xmin
Xscale =

(1)

Xmax—Xmin

Where Xi = feature value, Xmin = minimum feature
value, and Xmax = maximum feature value.

3.7 Performance Evaluation

To evaluate the performance of the proposed
DoS/DDoS Attack detection framework the
following metrics were used: accuracy, precision,
recall, F1-Score, and ROC-AUC.

e Accuracy: indicates the number of correct
produced predictions over the entire dataset. or
it can be defined as, how many positive is
properly predicted by the model over the whole
dataset. Accuracy computes as[16]:

TP+TN

Accuracy = —mm
v TP+FP+TN+FN

(2)

e Precision: indicates how accurate the model is
in terms of positive results. It calculates how
many positive values are predicted actually
positive among all positive (positive case that
are correctly classified as a positive over all
case are classified as a positive). Precision
computes as:

TP
TP+FP

Precision = 3)
e Recall: is the potential of a model to correctly
predict the correct positives (positive case that

are correctly classified as a positive over all
actual positives). The recall computes as:

TP
TP+FN

Recall 4)

e F1-Score: It is the harmonic mean of precision
and recall. It is a metric for determining how
accurate a model is because it considers both
how well the model makes true predictions that



are actually true and how many of all true
predictions the model correctly anticipated. F1-
score computes as:

precision - recall

F1Score =2 - (5)

precision + recall

Where TP: means both the ground truth and the
network output are positives, TN: means both the
network output and the ground truth are negatives,
FP: means the ground truth is negative while the
network output is positive, and FN: means the
ground truth is positive while the network output is
negative.

Receiver Operating Characteristics (ROC)
curve: is analysis derives from the signal processing
technique. Its usefulness is not limited to the model
alone, but spans several practical fields [17]. When
it comes to classification tasks, FAR (1-Specificity)
and Sensitivity are presented as a compromise. The
ROC curve demonstrates this compromise. ROC
curves frequently serve as a way to evaluate the
model's performance. The ROC curve contains
Sensitivity on the (Y-axis) and 1-Specificity on the
(X-axis) [18] (a larger area under the ROC curve
indicates that the classifier is better able to
distinguish between the two unique categories)
[123]. On the opposing hand, ROC curve is used in
the binary classification issue. The model is
successful when the AUC (Area Under the ROC
Curve) value is close to 1.

In addition, confusion matrix is a useful tool
for accurately assessing classification models. In
general, a confusion matrix is a matrix that consists
of C x C (C here refers to the number of classes).
This matrix is used to show the amount of the data
samples that the model classified it correctly, and the
amount of the data samples that the model classified
it incorrectly. In the case of C=2 (two classes), the
confusion matrix divides prediction results of the
classifier into four categories , True-Positive (TP),
True-Negative (TN), False-Positive (FP) and False-
Negative (FN). The confusion matrix for two classes
classification is shown in figure 10 [16].
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Figure 10. 2 x 2 Confusion Matrix [16]

4, Results

This section discusses the experiment's
results aimed at detecting Dos/DDos attacks. All
models were evaluated using the CSE-CIC-1D-2018
test set and a CIC-DDOS-2019 test set. Accuracy,
AUC-ROC and confusion matrix have been used to
show the performance, and classification reports

(Precision, Recall, and F1-Score) have been
calculated to evaluate the performance of
framework.

4.1 Results for the CSE-CIC-1DS2018
Dataset

Table 7 displays the summary of the
average of the results, and the classification report
shows the specific results for each type of attack is
illustrated in table 8. In this table, precision, recall,
and F1-score respectively are calculated. Figure
11shows compared performance models; RF-
RFE_SMOTE_RF achieves better performance for
all classes of attacks.

The results of the test on CSE-CIC-
DS2018 show that the RF-RFE_SMOTE_RF model
produced the best estimation based on the accuracy,
precision, recall, and fl-score criteria, with values
of 1.00, 1.00, 1.00, and 1.00, respectively. In
addition, the model produced the highest results in
terms AUC, with value of 1.00.The RF-
RFE_SMOTE_RF model achieves the highest
performance of all classes.

Whereas RF-RFE_SMOTE_LDA and RF-
RFE_SMOTE_LR models perform slightly poorly.
So, where observed nearly identical accuracy,
0.9669 and 0.96086, with AUC-ROC of 0.96 and
0.99. However, precision, recall, and F-Score are all
a little low, indicating that accuracy is often not
beneficial with balanced data. While RF-
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RFE_SMOTE_QDA and RF-RFE_SMOTE_NB
clearly show that methodology is the worst
performer. According to the results, the RF-
RFE_SMOTE_RF, and RF-RFE_SMOTE_LDA
models can recognize all classes.

The RF-RFE_SMOTE_QDA model seems
to be the most unsuccessful model in classifying
some classes of attack such as DoS-Hulk, DoS-
GoldenEye, and DDoS-LOIC-UDP. The recall
value for DoS-Hulk achieved 0.76 while DoS-
GoldenEye, and DDoS-LOIC-UDP achieved the
lowest value 0.15, and 0.46 respectively. The
precision value for DoS-Hulk achieved the lowest
value  0.49 while DoS-GoldenEye, and DDoS-
LOIC-UDP achieved the greatest value 0.75, and
0.96 respectively. The f1-score value for DoS-Hulk,
DoS-GoldenEye, and DDoS-LOIC-UDP achieved
the lowest value 0.60, 0.25, and 0.62 respectively.
The RF-RFE_SMOTE_NB model was not able to
correctly classify DDoS-LOIC-UDP class and the
worst results were with SlowHTTPTest class has
low recall, precision, and F-score values. The RF-

RFE_SMOTE_LR model is capable of

distinguishing all classes but the worst results were
with DoS-SIowHTTPTest class has low values for
Precision and F-score. On the other hand, it achieved
a fair recall value with 0.74.
Figure 12 depict the AUC-ROC curves of each class
and figure 13 shows the confusion matrix that
indicates how well the classes were predicted, as
well as which classes were wrongly predicted. In
accordance with the area under the ROC curves in
figure 12, RF-RFE_SMOTE_RF has higher
accuracy due to their 100% success rate in detecting
all attacks. All of the areas under the ROC curves for
all classes are nearly equal to one. While RF-
RFE_SMOTE_LDQ also has higher accuracy and
achieve a 97%, 98%, and 99% detection rate in the
some attacks and detection rates for other classes are
nearly equal to value one. In case of the RF-
RFE_SMOTE_QDA, the area under the ROC curve
is nearly equal to one for the 2, and 5 classes, and
detection rates for other classes 1, 4, and 6 are very
weak. Whereas 0, and 3 classes have nearly close to
80% detection rates. RF-RFE_SMOTE_LR model,
the area under the ROC curve is nearly equal to one
for the 1, and 5 classes only, and the detection rates
for 0, 2, and 4 classes are close to 90%, while 3, and
6 classes have close to 80% detection rates. In the
case of RF-RFE_SMOTE_NB, the area under the
ROC curve is nearly equal to one for the 1, and 5
classes only, and the detection rates for 0,2, 4,and 6
classes are close to 90% and 80%, while 3 has close
to 50% detection rates.
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Table 7. Averaged Evaluation of Methods for Multi-
class Classification after RF-RFE with SMOTE on
CSE-CIC-IDS2018

RF-

RFE_SMOTE RF 1.00 1.00 1.00 1.00
RF-
RFE SMOTE LDA | 0874 0.882 0.878 0.9669
RF-
RFE SMOTE QDA 070142 083857 072428 075534
RF-
RFE SMOTE LR 091857 084142 086428 096086
RF-
RFE SMOTENB 079428 072571 074428 093330
100
90
80
70
60
50
40
30
20
10
0
RF-RFE RF-RFE RF-RFE RF-RFE RF-RFE
+SMOTE +SMOTE  +SMOTE+  +SMOTE +SMOTE
+RF +LDA QDA +LR +NB
H Recall 100 87.4 70.142 91.857 79.428
M Precision 100 88.2 83.857 84.142 72.571
M Fl-score 100 87.8 72.428 86.428 74.428
accuracy 100 96.69 75.534 96.086 93.83

Figure 11. Performance Comparison of All
Models
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Table 8. Results of Testing Performance Evaluation on Methodology for Each Class of CSE-CIC-IDS2018

Benign 1.00 1.00 1.00

DoS-Hulk 1.00 1.00 1.00

DoS-HOIC 1.00 1.00 1.00

RF-RFE_SMOTE_RF DoS-SlowHT TPTest 1.00 1.00 1.00
DoS-GoldenEye 1.00 1.00 1.00

DoS-Slowloris 1.00 1.00 1.00

DDOS-LOIC-UDP 1.00 1.00 1.00

Benign 0.97 1.00 0.99

DoS-Hulk 1.00 0.96 0.98

DoS-HOIC 0.98 1.00 0.99

RF-RFE_SMOTE_LDA DoS-SlowHTTPTest 0.65 0.57 0.61
DoS-GoldenEye 0.95 0.89 0.92

DoS-Slowloris 0.90 0.99 0.94

DDOS-LOIC-UDP 0.67 0.77 0.72

Benign 0.89 0.89 0.89

DoS-Hulk 0.76 0.49 0.60

DoS-HOIC 1.00 0.99 1.00

RF-RFE_SMOTE_QDA DoS-SlowHTTPTest 0.65 0.81 0.72
DoS-GoldenEye 0.15 0.75 0.25

DoS-Slowloris 1.00 0.98 0.99

DDOS-LOIC-UDP 0.46 0.96 0.62

Benign 0.94 1.00 0.97

DoS-Hulk 1.00 0.99 1.00

DoS-HOIC 0.99 1.00 0.99

RF-RFE_SMOTE_LR DoS-SlowHTTPTest 0.74 0.29 0.41
DoS-GoldenEye 1.00 0.93 0.96

DoS-Slowloris 1.00 0.98 0.99

DDOS-LOIC-UDP 0.76 0.70 0.73

Benign 0.93 0.96 0.95

DoS-Hulk 1.00 0.99 1.00

DoS-HOIC 0.99 1.00 0.99

RF-RFE_SMOTE_NB DoS-SlowHTTPTest 0.04 0.06 0.05
DoS-GoldenEye 0.94 0.85 0.89

DoS-Slowloris 1.00 1.00 1.00

DDOS-LOIC-UDP 0.66 0.22 0.33
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Figure 12. ROC Curve based on CSE-CIC-IDS2018dataset for (a) RF-RFE_SMOTE_RF (b) RF-RFE_SMOTE LR
(c) RF-RFE_SMOTE_LDA (d) RF-RFE_SMOTE_QDA (e) RF-RFE_SMOTE_NB
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Figure 13. Confusion Matrix based CSE-CIC-1DS2018 dataset for (a) RF-RFE_SMOTE_RF (b) RF-

RFE_SMOTE_LR (c) RF RFE_SMOTE_LDA (d) RF-RFE_SMOTE_QDA (e) RF-

RFE_SMOTE_NB
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According to the Confusion Matrix in
figure (4.3), The RF-RFE-SMOTE_LR model
predicted the’DoS SlowHTTPTes’attack with an
accuracy of 74% and classified it as 26% ’Dos-
GoldenEye’ and predicted the ‘DDoS-LOIC-UDP’
attack with an accuracy of 76% and classified it as
21% ‘DoS-Slowloris’.

The RF-RFE-SMOTE_LDA model
predicted the’DoS-SlowHTTPTes’ attack with an
accuracy of 65%, classified it as 32% ’Dos-
GoldenEye’, predicted the ‘DoS-Slowloris’ attack
with an accuracy of 90%, and classified it as 10%
’Dos-GoldenEye’. in addition, the RF-RFE-
SMOTE LDA classified the ’DDoS-LOIC-
UDP’attack so, with an accuracy of 67%, and
classified it as 26% ’Dos-GoldenEye’, and 5%’
DoS-Slowloris’.

The RF-RFE-SMOTE_QDA  model
predicted ‘DoS-Hulk’ attack with an accuracy of
76% and classified it as 24% ’Benign’ and predicted
the "DoS-SlowHTTPTest’ attack with an accuracy
of 65% and classified it as 18% ’Benign’ and 17%
‘DoS-Hulk’. in  addition, the RF-RFE-
SMOTE QDA model misclassified the ’Dos-
GoldenEye’ and "DDoS-LOIC-UDP’ it classified as
81%, 13% and 41% ‘DoS-Hulk’ , ‘Benign’ and
’DoS SlowHTTPTes’ attacks respectively.

The RF-RFE-SMOTE_NB model succeed
predicted all classes except 'DoS SlowHTTPTes’
was unable to accurately classify and misclassified
it as regular traffic. and The RF-RFE-SMOTE_NB
model predicted "'DDoS-LOIC-UDP’ attack with an
accuracy of 66% and classified it as 34% ’Benign’
While the RF-RFE-SMOTE_RF model obtained the
best classification results among the other
classification  algorithms.  The  performance
evaluation metrics for different techniques trained
on the CSE-CIC-IDS2018 dataset in terms of the
time to build and test the model is presented in table
(4.3).

From table 9, it can be distinguished that
RF-REF-SMOTE_NB takes the minimum build
time, but RF-REF-SMOTE_RF takes the maximum
build time and test time, while in the testing state,
RF-REF-SMOTE_LR takes the lowermost time.
The lowest times to test the model were achieved by
RF-REF-SMOTE_LR with 0.008 seconds. The RF-
REF-SMOTE_NB classifier takes the minimum
build time but that has the worst detection
performance.

Here, the RF-REF-SMOTE_RF classifier
that has the best detection performance. The RF-
REF-SMOTE_RF classifier comes with the highest
overhead in terms of the time to build and test the
model but RF-REF-SMOTE_NB classifier comes
with the lowest overhead in terms of the time to
build and test the model.
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Table 9. Time to build and test the models for the
CSE-CIC-IDS2018 dataset

e Time to Build the Time to Test the
ClEssiiren Model (Sec.) Model (Sec.)
RF-RFE_SMOTE_RF 733.352 10.305
RF-RFE_SMOTE_LDA 114.633 0.025
RF-RFE_SMOTE_QDA 5.983 2.497
RF-RFE_SMOTE_LR 103.936 0.008
RF-RFE_SMOTE_NB 1.046 0.386

4.2 Results for the CIC-DD0S2019 Dataset

Table 10 provides a summary of the
average findings, while table 11 illustrates the
classification report's individual outcomes for every
type of attack. In this table, the accuracy, recall, and
F1-score are computed separately. Figurel4 shows
compared performance models; RF-RFE SMOTE_
RF achieves better performance for all classes of
attacks.

Table 10. Averaged Evaluation of Methods for
Multi-class Classification on CIC-DD0S2019

0.99990

0.99111

0.5891

0.99619

0.953723

RF-RFE
+SMOTE
+NB

58

59.375

RF- 0.98875 0.9975 0.9925
RFE_SMOTE_RF
RF- 0.8575 0.81125 0.82875
RFE_SMOTE_LDA
RF- 0.55375 0.68875 0.45375
RFE_SMOTE_QDA
RF- 0.90375 0.94 0.92
RFE_SMOTE_LR
RF- 0.58 0.59375 0.5825
RFE_SMOTE_NB
100
90
80
70
60
50
40
30
20
10
0 RF-RFE RF-RFE RF-RFE RF-RFE
+SMOTE +RF +S+“{'§:E +SMO}IE+QD +SMOTE +LR
 Recall 98.875 85.75 55.375 90.375
HPrecision 9975 81.125 68.875 94
WFlscore  99.25 82.875 45.375 92

accuracy 99.99 99.111 58.91 99.619 95

Figure 14. Performance Comparison of All
Models

58.25
.3723
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Table 11. Results of testing Performance evaluate on methodology for each class of CIC-DD0S2019

RF-RFE_SMOTE_RF Benign 1.00 1.00 1.00
LDAP 1.00 1.00 1.00

MSSQL 1.00 1.00 1.00

NetBIOS 1.00 1.00 1.00

Portmap 1.00 1.00 1.00

Syn 1.00 1.00 1.00

UDP 1.00 1.00 1.00

UDPLag 0.91 0.98 0.94

RF-RFE_SMOTE_LDA Benign 0.97 0.96 0.96
LDAP 1.00 1.00 1.00

MSSQL 0.62 0.44 0.52

NetBIOS 0.99 1.00 1.00

Portmap 0.99 0.97 0.98

Syn 1.00 1.00 1.00

UDP 0.98 0.99 0.99

UDPLag 0.31 0.13 0.18

RF-RFE_SMOTE_QDA Benign 1.00 0.88 0.93
LDAP 0.90 1.00 0.95

MSSQL 0.97 0.01 0.02

NetBIOS 0.00 1.00 0.00

Portmap 0.00 0.57 0.00

Syn 0.99 1.00 1.00

UDP 0.50 1.00 0.67

UDPLag 0.07 0.05 0.06

RF-RFE_SMOTE_LR Benign 0.97 0.95 0.96
LDAP 1.00 1.00 1.00

MSSQL 0.69 0.81 0.75

NetBIOS 1.00 1.00 1.00

Portmap 0.99 1.00 1.00

Syn 1.00 1.00 1.00

UDP 1.00 0.99 0.99

UDPLag 0.58 0.77 0.66

RF-RFE_SMOTE_NB Benign 0.64 0.91 0.75
’ LDAP 1.00 1.00 1.00

MSSQL 0.00 0.00 0.00

NetBIOS 1.00 0.87 0.93

Portmap 0.00 0.00 0.00

Syn 1.00 0.99 0.99

UDP 1.00 0.98 0.99

UDPLag 0.00 0.00 0.00
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The test results on CIC-DD0S2019, the
best model is the RF-RFE_SMOTE_RF, which only
achieved 0.99990 % accuracy, AUC-ROC of 99,
precision of 0.9975, recall of 0.98875, and an F-
score of 0.9925. The RF-RFE_SMOTE_RF model
recognizes all classes. On the other side, The RF-
RFE_SMOTE_LDA and the RF-RFE_SMOTE_LR
models have an accuracy of 0.99111 and 0.99619,
respectively, and the AUC-ROC of 0.93 and 0.95,
respectively, achieve the highest. While the worst
methodologies are RF-RFE_SMOTE_QDA and
RF-RFE_SMOTE_NB. The RF-RFE_SMOTE_NB
and RF-RFE_SMOTE_QDA models were not able
to correctly classify the MSSQL, Portmap, UDPLag,
NetBIOS, and, UDP classes. According to the
results, there is a problem with detecting classes like
Portmap, UDPLag, MSSQL, and NetBIOS, UDP.
However, the detection accuracy for the other class
types is rather high.

Figure 15 depict the AUC-ROC curves of
each class and figure 16 shows the confusion matrix
that indicates how well the classes were predicted,
as well as which classes were wrongly predicted. In
accordance with the area under the ROC curves in
figure 15, RF-RFE_SMOTE_RF has higher
accuracy due to their 100% success rate in detecting
all attacks. All of the areas under the ROC curves for
all classes are nearly equal to one. The RF-
RFE_SMOTE_LR model, the area under the ROC
curve is nearly equal to one for the 1, 3, 4, 5, and 6
classes, and detection rates for other classes 0, and 2
are close to 90% and 80%, while 7 class has close to
70% detection rates. While RF-RFE_SMOTE_LDQ
model, the area under the ROC curve is nearly equal
to one for the 1, 3, 4, and 5 classes only, and the
detection rates for 2, and 7 classes are close to 80%
and 60%, while 0, and 6 classes have close to 90%
detection  rates. In the case of RF-
RFE_SMOTE_QDA and RF-RFE_SMOTE_NB,
the area under the ROC curve is nearly equal to one
for the 1, 5, and 6 classes only, and the detection
rates for 0, and 3 classes are close to 80% and 90%,
while 2, 4, and 7classes have close to 50% detection
rates.

According to the Confusion Matrix in
figure (4.6), The RF-RFE_SMOTE_LR model
predicted the’MSSQL attack with an accuracy of
69%, classified it as 26% ’UDP’, predicted the
‘UDPLag’ attack with an accuracy of 58%, and
classified it as 27% ‘UDP’.

In addition, The RF-RFE_SMOTE_LDA
model predicted the’MSSQL’attack with an
accuracy of 62% and classified it as 31% *UDP’. On
the other hand, the RF-RFE_SMOTE_LDA failed
classified‘UDPLag’ attack so, with an accuracy of
31%, and classified it as 55% *UDP’. The RF-
RFE_SMOTE_QDA model failed classified all
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attacks except Bening, LDAP, MSSQL,Syn attacks
that RF-RFE_SMOTE_QDA model succeed
predicted. The RF-RFE_SMOTE_NB model
succeed predicted all classes except ‘MSSQL’,
‘PORTMAP’, and ‘UDPLag’ was unable to
accurately classify. and The RF-RFE_SMOTE_NB
model predicted ‘Bening’ with an accuracy of 64%
and classified it as 33% ’syn’ attack While the RF-
RFE_SMOTE_RF model obtained the best
classification results among the other classification
algoritms.The performance evaluation metrics for
different techniques trained on the CSE-CIC-
IDS2019 dataset in terms of the time to build and
test the model is presented in table 12.

Table 12. Time to build and test the models for the
CSE-CIC-1DS2019 dataset

Classifier Time to Build Time to Test
the Model (Sec.)  the Model
(Sec.)
RF-RFE_SMOTE_RF 836.714 15.179
RF-RFE_SMOTE_LDA 52.572 0.768
RF-RFE_SMOTE_QDA 20.864 9.743
RF-RFE_SMOTE_LR 233.53 0.014
RF-RFE_SMOTE_NB 3.484 0.009

From table (4.6) it can be distinguished that
RF-RFE_SMOTE_NB takes the minimum build
time, but RF-RFE_SMOTE_RF takes the maximum
build time and test time, while in the testing state,
RF-RFE_SMOTE_NB takes the lowermost time.
The lowest times to test the model was achieved by
RF-RFE_SMOTE_NB with 0.009 seconds. The RF-
RFE_SMOTE_NB classifier takes the minimum
build time and test time but that has the worst
detection  performance.  Here, the RF-
RFE_SMOTE_RF classifier that has the best
detection performance.
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Figure 15. ROC Curve based on CIC-DD0S2019 dataset for (a) RF-RFE_SMOTE_RF (b) RF-RFE_SMOTE_LR
(c) RF-RFE_SMOTE_LDA (d) RF-RFE_SMOTE_QDA () RF-RFE_SMOTE_NB
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Figure 16. Confusion Matrix based on CIC-DD0S2019dataset for (a) RF-
RFE_SMOTE_RF (b) RF-RFE_SMOTE_LR (c) RF-RFE_SMOTE_LDA (d) RF-
RFE_SMOTE_NB (e) RF-RFE_SMOTE_QDA
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5 Conclusion

DoS and DDoS attacks happen all the time on
the Internet, and their number has grown
exponentially over the past few years. Even though
there are advanced and sophisticated ways to
countermeasure these attacks, these attacks are still
a severe issue in network security and a problem
today.

The analysis and visualization using t-SNE
for CSE-CIC-1DS2018 and CIC-DD0S2019 led to
the following conclusions: the classes intertwined
and were imbalanced in some classes. For this
reason, the framework adopts SMOTE. Broadly
translated, our findings indicate that combining RF-
RFE with SMOTE can reduce feature
dimensionality and reduces the impact of data
imbalances. Based on this, the 39 best features of
Group Set (39-RF-RFE) were selected from CSE-
CIC-IDS2018, and the 40 best features of Group Set
(40-RF-RFE) in CIC-DD0S2019. The present thesis
findings confirmFurthermore, propose a machine-
leaning-based framework to detect DoS and DDoS
attacks.

The paper feeds these two group sets of
features to the classification process of RF, LR, NB,
LQA, and LDA as classifiers. The finding decreases
the preprocessing time and complexity of the model
and increases accuracy.

Results from the experiment show that RF-
RFE_SMOTE_RF outperformed all other models
by obtaining an accuracy of 100% for CSE-CIC-
IDS2018 and 0.99% for CIC-DD0S2019.
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