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The spreadability of large and diverse computer graphics applications, highly 

powerful and programmable hardware platforms, rapid advances in their 

programing techniques have all permitted design different hardware accelerators 

for many applications. While the rapid increase in “graphics performance 

accelerators “have made it a compelling platform for computational 

requirements tasks in several applications areas. Therefore, graphics 

accelerators have attracted us because of their important applications. In this 

paper tries to reach those objectives through a regular review of similar studies 

within this field of research. The process started by intensely surfing the famous 

specialized digital libraries, as a result, “40 related works “were collected and 

examined upon several important technical subjects: technical motivations that 

underlie the chosen graphics algorithm, the software development that led to 

interest in graphic algorithms, hardware platform used , programming tool, and 

the design intended for 2D or 3D graphics. We believe that the software 

techniques presented in this paper will be helpful for researchers who plan to 

develop new “graphics accelerators algorithms “. Also,  it gives the required 

introductions in developing “hardware graphics accelerators “and help select 

materials, techniques, and tools. 
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1. Introduction 

Graphics accelerators are hardware 

components optimized for doing the calculations 

for 2D or 3D computer graphics[1]. The graphic 

accelerator controls the display system and 

supports all processes and functions needed. Some 

of them can support multiple display devices [2] . 

GPUs also can be used to display stereoscopic 

imagery, where two images are calculated to show 

them to the corresponding eye. The stereoscopic 

graphics accelerator needs distinct capabilities 

more than a traditional one [3].  

Graphics algorithms are characterized by the 

complexity of dealing with a massive amount of 

data on hand, and their need for high-level 

computing so distinctive processors for computer 

graphics are designed with certain accelerators for 

each specific algorithm [4], [5] 

Today, Computer graphics accelerators chips 

are may be the most powerful computational 

hardware [6], [7]. These chips are known as 

Graphics Processing Units (GPUs). It moved from 

supplementary  parties   to  accident  , strong  ,  and 

programmable processors . Many   researchers   

and designers have become interested in using 

graphics  hardware for general  purpose. In latest 

years, there has been an increase in interest in such 

research endeavors, termed GPGPU (General 

Purpose GPU Computing) [5], [7].  

The purpose of the current study is to review a 

group of graphics accelerators that focuses on 

hardware ones and their various applications, 

whether for computer graphics, image processing, 

or even for general uses. This paper composes six 

sections; the first describes the motivation to 

present this review, the second involves the 

theoretical aspects of the basic graphics algorithms 

used in the gathered papers, the third illustrates the 

hardware platform used. Also, it includes a 

practical part for each architecture, section four 

presents the experimental results and analysis of 

the performance obtained through the methods 

reviewed in the previous sections. Finally, section 

five contains conclusions. 

 

2. Theory  

Computer graphics are known as pictorial 

representations or graphical representations of 

objects. In computer graphics, a bitmap display 

system is used to generate and display images [8]. 

The diverse applications of computer graphics 

hardware are achieved by rapid optimization in 

programmability and performance for vital 

elements of graphics hardware [3], [9]. This  

section will  expla  the  development  of  computer  

graphics  algorithms  and  describe  their   basics. 

2.1 Graphics Pipeline 

Graphics pipeline are a basic concept in 

computer graphics conceptually organized as 

several stages in a pipeline way through which data 

and commands that describe the scene pass when 

presented. The term rendering pipeline is also used. 

These stages are the application, geometry and 

raster stages [10]- [12]. They are presented in 

figure 1. 

 

 

The application stage only deals with the 

object specification directly as the objects are 

created from connected geometric shapes and 

specifications to appropriate another stage. Figure 1 

illustrates these stages implemented in software 

[10], [12].   

The geometric stage: is the stage responsible 

for most operations of the per-primitive or per-

vertex. Basically, in this stage, matrix 

transformations are applied to the primers received 

from the application stage, resulting in the mapping 

of the input polygons to the 2D display. This stage 

has many functional substages: the model and 

transforms, lighting, projection, clipping, and the 

screen mapping stages. In the model and transform 

stage, the coordinates  are converted from input 

model coordinates to a common system coordinate. 

In the lighting stage, light sources and properties of 

the material are calculated. In the projection stage, 

a perspective type is used to transform  3D objects 

into a  2D plane, from which we are viewing. The 

clipping stage removes objects that will not be 

visible from the scene this operation  can be done 

either by discarding objects that are outside of the 

field of view, or too far a way, or clipping objects 

that intersect with any clipping plane. Finally, in 

the screen mapping stage, the scene data is 

transformed to its equivalent screen coordinates. 

The geometric stage has usually implemented in 

software, although there are high-performance 

Figure 1: A typical 3D graphics pipeline 

[12]. 

 



Layla Jamal Hussein    /  NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15 

 

8 

 

 

graphical systems that implement this conceptual 

stage in hardware. At this stage floating-point 

calculations are performed [12]. 

The goal of the rasterizer stage is to assign 

correct colors to the pixels on the screen to render 

an image correctly. This process is called 

rasterisation or scan conversion. Unlike the 

geometry stage, which handles per-primitive 

operations, the rasterizer stage handles per-pixel 

operations. During rasterisation, the data 

represented by the object database (colors and 

texture) is transformed  into a pixel-based image. A 

scan-line algorithm is commonly used to give the 

final image. The pixel has scanned a line at a time 

and their color is determined from the polygons 

that contribute to that part of the screen. The  2D  

images of the projected primitives are stored in a 

memory called the frame buffer, which is read 

periodically by the display controller to form the 

image on the screen. The rasterisation is concerned 

only with the production of a series of frame buffer 

addresses and values known as (fragments). Each 

fragment is fed to the "depth-buffer" or “Z-buffer 

“to solve the visibility problem. Because of the 

sampling process involved by rasterisation, 

fragment values may suffer from an aliasing 

phenomenon (e.g., the stair-case effect of lines 

drawn on a raster screen), this will be overcome  in 

the next process which is called “anti-aliasing “. 

Finally, the surviving part of the frame buffer, after 

all the primers have been processed, will produce 

the final image. The rasterizer   stage is 

implemented in "hardware" wherever exists the 

need for "graphics acceleration" and it usually 

involves only integer arithmetic  [12]. 

2.2 Graphics Algorithm 

The references are carefully studied. Figure 2 

illustrates the percentages of using graphical 

accelerators in various applications; for computer 

graphics, image processing, or general applications. 

The main algorithms used in the design of graphics 

accelerators will be presented in this section. Figure 

3, depicts the percentage use of these algorithms in 

hardware accelerators design.  

 

 
Figure 2. Proportion use of computer graphics 

accelerator applications for all the reviewed studies. 

 

 
 

Figure 3: Proportion use of computer graphics algorithm 
in hardware design for all the reviewed studies. 

2.2.1 Line Generation Algorithms 

This algorithm is for drawing a line on discrete 

graphics devices. It rasterizes lines in one color [8], 

[13], [14]. Improving representation with multiple 

degrees of color requires an advanced process, 

spatially anti-aliasing [1]. The most famous line 

algorithms are DDA [14] and Bresenham [8], [15], 

both of them used for 2D or 3D [16], [3], but the 

latter is used in designing graphics accelerators 

because it uses integer calculations without 

affecting the accuracy of line drawing. Many 

researchers have either used [3], [13] or developed 

[8], [17] Bresenham's algorithm. The development 

is either to work in 3D or be implemented using 

FSM [18] or remove aliasing by integrating it with 

Wu's algorithm [1].  The flowchart for this 

algorithm in its simple 2D form can find in [1], 3D 

in [8]. 

2.2.2 Circle Generation Algorithms 

A circle can be created using two algorithms: 

Bresenham, and the midpoint circle algorithms. 

The Bresenham 2D algorithm is used to draw lines 

to generate the circuit by assigning parameters at 

each sampling step. Square roots are required to 

calculate distances in pixels. The Bresenham circle 

algorithm avoids square root calculations by 

comparing square distances to pixels. Therefore, 

the Bresenham‘s algorithm is used in the design of 

graphics accelerators [2], [19]. 

2.2.3 Clipping Algorithms 

Removing objects that will not be visible from 

the scene can perform this operation by clipping 

objects that intersect with any cutting level. There 

are two kinds of clipping (Hardware clipping and 

Software clipping). The hardware clipping machine 

is a two-dimensional automatic clipping machine. 

The rectangular clipping screen can be defined by 
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four-piece records where each record is loaded with 

the value of the border it represents. A software 

clipping is essential for two reasons. The first is to 

clip those polygons that are partly in the positive 

space and partly in the negative space and cannot 

be properly handled by the hardware cutting 

machine, and the second reason for using software 

clipping is that it is necessary to prevent the 

projected header values of any polygon from 

exceeding the capacity of the devices or the 

acceptable range of device coordinates. The most 

commonly used algorithm in the design of graphics 

accelerators is Cohen Sutherland [20], [21]. 

2.2.4 Transformation Algorithms 

Usually, two main categories of transformation 

are used in graphics systems. Coordinate 

transformations deal with the shift from one 

coordinate system to another. In the second order, 

geometric transformations are applied to entities 

within a single coordinate system. Many graphics 

applications include a series of geometric 

transformations. Animations, e.g., may require 

translating and rotating an object. So, geometric 

transformations are the most commonly used 

algorithms in the design of graphics accelerators 

[22], [23], [7], [9]. 

2.2.5 Modeling Algorithms 

One of the major concepts in computer 

graphics is the modeling of objects and images. 

This means describing objects and images to 

produce a visual presentation [24]. One way to do 

this is to use a set of primitive or geometric shapes 

to execute on a computer but flexible to represent 

or model a variety of objects. This technique 

describes a 3D object as a set of surfaces that 

separate the internal object from the environment. 

Typical examples of boundary representations are 

polygon faces [25]. 

2.2.6 Projection Algorithms 

Projection is the stage in which an object 

transforms from a three-dimensional space to its 

image in a two-dimensional space, because the 

surface of the display is only two-dimensional [3], 

[26]. This provides the viewer with a depth signal. 

Therefore, this type of projection is used in most 

hardware accelerators [3], [13]. 

2.2.7 Hidden Surface Detection Algorithms 

One of the most common problems in 

computer graphics is the removal of hidden parts of 

body images. All parts of the object are displayed, 

including many parts that must be invisible. To 

remove these parts, you must apply a hidden line or 

hidden surface algorithm. The algorithm works on 

different types of scene models, generating 

different output forms [27]. Among these 

algorithms, the Z-Buffer algorithm is used to solve 

the visibility problem and is also used in the design 

of hardware graphics accelerators. The Z-buffer is a 

dedicated piece of memory that is divided into 16, 

24 or 32-bit words, each of which is linked to a 

different pixel on the screen. The Z-buffer store is 

used to store the depth of the 3D point that is 

displayed on the corresponding pixel. A density 

buffer is used to store the density of this pixel in 

each pixel position. The frame buffer can be used 

to display objects and remove hidden objects by 

scanning all faces and updating the pixel value only 

when the depth of the point that appears on the 

pixel is less than the depth stored in the pixel z 

buffer. The front faces of the object can be 

converted into an image in any order [12], [13]. 

 

3. Implementation of graphics 

hardware accelerators 

Table-1 in  appendix  illustrates  a  summary  

of  the  collected  data  from “ 40  reviewed  works 

“ [1]-[3], [5]-[11], [13], [14],[16]-[21], [23], [26], 

[28]-[47]. Following  sections  describe  the  details  

results  obtained  from  these  researches  that  we  

think  are  useful  for  designers  work  in  this  

field. 

3.1 Hardware platforms 

The hardware platforms are several of a 

compatible device on which software applications 

can excudit. Each hardware platform has its own 

program language, so a special platform software 

should be created that includes a standard type of 

processor and hardware parts associated with it 

[48], [49]. After reading the researches under study 

from hardware platforms used. Figure 4 illustrates 

these platforms used in the design of graphics 

accelerators. This figure shows the dominance of 

FPGAs then GPUs. 

 

 
 

Figure 4: Proportion use of hardware platforms used in 
graphics accelerator for all the reviewed studies. 

3.2 Software design tools 

The software environment is used to write and 

run applications. These include software tools such 

as graphical interface builders, pool creators, class 
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libraries, and application development utilities. 

Figure 5 shows the software platforms used in the 

design of graphics accelerators, which illustrates 

the dominance of VHDL and HLS on these 

platforms. 

 

 
 

Figure 5: Proportion use of Software platforms used in 
graphics accelerator design for all the reviewed studies. 

 

4. Results and analysis 

The graphics accelerators of the reviewed 

references have been built according to the 

researcher’s need, either to speed up a graphics 

algorithm, hardware system, to fit the space of the 

hardware platform used in the design, or to reduce 

the consumed power as shown in Figure 6. Speed is 

the dominant measure used by researchers during 

design. By studying references, the  improved 

speed increased speed of performance, as high 

speed, scalability and efficiency can be achieved 

using FPGA devices compared to other 

implementation-based computing mechanisms 

[50]- [52]. Designers may increase performance, 

power, or cost to reduce design time [53]- [55]. It 

occupies 74% of the total proportion of the research 

under study. Power consumption is a major factor 

for battery-based systems [55], [56]. Results of the 

power improvement, are also presented by studying 

the references in which we observed a significant 

reduction in power consumption while maintaining 

system performance. This measurement tool 

occupies 9% of the total proportion of the research 

under study. The results from the references study 

showed how improvement guidelines applied to the 

timing and improvement of the area. Resources can 

be allocated as needed (which is subject to the area 

or energy) [57]. It occupies 17% of the total 

proportion of the research under study. 

 

 

Figure 6: Proportion main purpose used in graphics 
accelerator design for all the reviewed studies. 

 

5. Conclusion  

We provided an extensive survey and 

classification to develop new algorithms for 

graphics accelerators design. A summary was 

provide in the development of hardware graphics 

accelerators. We then described the improvements 

that modern research focuses on. The purpose of 

reviewing articles published in the past 10 years is 

to help choose technology and tools in the 

development of these accelerators. Figure 7 in the 

appendix show the flowchart for the system. 

References 

[1] B. M. Younis and A. K. Younis, “Hardware 
accelerator for anti-aliasing Wu’s line algorithm 

using FPGA,” Telkomnika, vol. 19, no. 2, pp. 

672–682, 2021. 

[2] A. H. Ali and R. Z. Mahmood, “Bresenham’s 
Line and Circle Drawing Algorithm using 

FPGA,” AL-Rafidain J. Comput. Sci. Math., 

vol. 15, no. 2, pp. 39–53, 2021. 

[3] M. R. Ahmed and B. M. Younis, “3D Stereo 
Rendering Using FPGA,” Comput. Eng. Intell. 

Syst., vol. 10, no. 3, p. 19, 2019. 

[4] J. Vince and J. A. Vince, Mathematics for 

computer graphics, vol. 3. Springer, 2010. 
[5] A. M. Ibrahim and S. E. D. Habib, “Design and 

Implementation Of Cairo University Graphics 

Processing (CUGPU) Using HLS Approach,” in 

2021 3rd Novel Intelligent and Leading 
Emerging Sciences Conference (NILES), 2021, 

pp. 1–3. 

[6] P. Renc, T. Pęcak, A. De Rango, W. Spataro, G. 

Mendicino, and J. Wąs, “Towards efficient 
GPGPU Cellular Automata model 

implementation using persistent active cells,” J. 

Comput. Sci., p. 101538, 2022. 

[7] S. Nawfal and F. Ali, “The acceleration of 3D 
graphics transformations based on CUDA,” J. 

Eng. Des. Technol., 2018. 

[8] B. M. K. Younis and L. N. S. M. Sheet, 

“Hardware Implementation of 3D-Bresenham’s 



Layla Jamal Hussein    /  NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15 

 

11 

 

 

Algorithm Using FPGA,” Tikrit J. Eng. Sci., 

vol. 20, no. 2, pp. 37–47, 2013. 
[9] S. N. Alrawy and F. H. Ali, “GPU Accelerated 

Rotation About an Arbitrary Axis,” in 2018 

International Conference on Advanced Science 

and Engineering (ICOASE), 2018, pp. 36–41. 
[10] V. Kasik and A. Kurecka, “FPGA 

Implementation of a Simple 3D Graphics 

Pipeline,” Adv. Electr. Electron. Eng., vol. 13, 

no. 1, pp. 39–47, 2015. 
[11] D. Corbalan-Navarro, J. L. Aragon, M. 

Anglada, E. De Lucas, J.-M. Parcerisa, and A. 

Gonzalez, “Omega-Test: A Predictive Early-Z 

Culling to Improve the Graphics Pipeline 
Energy-Efficiency,” IEEE Trans. Vis. Comput. 

Graph., 2021. 

[12] D. Crisu, S. Cotofana, and S. Vassiliadis, “A 

hardware/software co-simulation environment 
for graphics accelerator development in ARM-

based SOCs,” 2002. 

[13] B. M. Kamal and N. Salim, “A real time 

dynamic 3D graphics processor using FPGA,” 
Int. J. Res. Dev. Eng. IJRDE, vol. 2, no. 1, pp. 

1–12, 2013. 

[14] F. Hamid Ali, “Depth Buffer DDA Based on 

FPGA,” Al-Rafidain Eng. J. AREJ, vol. 19, no. 
5, pp. 28–39, 2011. 

[15] M. Daniel, “A Mathematical Overview of 

Bresenham Algorithms in the Determination of 

Active Pixel Positions”. 
[16] C. Desmouliers, E. Oruklu, S. Aslan, J. Saniie, 

and F. M. Vallina, “Image and video processing 

platform for field programmable gate arrays 

using a high-level synthesis,” IET Comput. 
Digit. Tech., vol. 6, no. 6, pp. 414–425, 2012. 

[17] S. Ismae, O. Tareq, and Y. T. Qassim, 

“Hardware/software co-design for a parallel 

three-dimensional bresenham’s algorithm.,” Int. 
J. Electr. Comput. Eng. 2088-8708, vol. 9, no. 1, 

2019. 

[18] K. Panek, B. Flak, S. Koryciak, and K. Wiatr, 

“Basic 3D graphics processor implemented on 
small FPGA,” Meas. Autom. Monit., vol. 64, 

2018. 

[19] J. K. Kim, J. H. Oh, J. H. Yang, and S. E. Lee, 

“2D Line draw hardware accelerator for tiny 
embedded processor in consumer electronics,” 

in 2019 IEEE International Conference on 

Consumer Electronics (ICCE), 2019, pp. 1–2. 

[20] A. E. Beasley, C. T. Clarke, and R. J. Watson, 
“An OpenGL Compliant Hardware 

Implementation of a Graphic Processing Unit 

Using Field Programmable Gate Array–System 

on Chip Technology,” ACM Trans. 
Reconfigurable Technol. Syst. TRETS, vol. 14, 

no. 1, pp. 1–24, 2020. 

[21] A. I. Dawod, “Hardware Implementation Of 
Line Clipping A lgorithm By Using FPGA,” 

Tikrit J. Eng. Sci., vol. 18, no. 3, pp. 89–105, 

2011. 

[22] F. H Ali and A. I Dawod, “FPGA Based 
Implementation Of Concatenation Matrix,” Al-

Rafidain Eng. J. AREJ, vol. 18, no. 2, pp. 15–

31, 2010. 

[23] D. Ali and H. Fakhrulddin, “Transformation 
matrix for 3D computer graphics based on 

FPGA,” Al-Rafidain Eng. J. AREJ, vol. 20, no. 

5, pp. 1–15, 2012. 
[24] S. Dhar and S. Pal, “Surface Reconstruction: 

Roles in the Field of Computer Vision and 

Computer Graphics,” Int. J. Image Graph., vol. 

22, no. 01, p. 2250008, 2022. 
[25] J. Romero, D. Tzionas, and M. J. Black, 

“Embodied hands: Modeling and capturing 

hands and bodies together,” ArXiv Prepr. 

ArXiv220102610, 2022. 
[26] F. Jabar, J. Ascenso, and M. P. Queluz, 

“Perceptual analysis of perspective projection 

for viewport rendering in 360° images,” in 2017 

IEEE International Symposium on Multimedia 
(ISM), 2017, pp. 53–60. 

[27] L. M. Saeed and F. H. Ali, “Evaluation of 

Hidden Surface Removal Methods Using Open 

GL,” Al-Rafidain Eng. J. AREJ, vol. 26, no. 2, 
pp. 300–308, 2021. 

[28] K. Georgopoulos et al., “An evaluation of 

vivado HLS for efficient system design,” in 

2016 International Symposium ELMAR, 2016, 
pp. 195–199. 

[29] H. M. Abdelgawad, M. Safar, and A. M. 

Wahba, “High level synthesis of canny edge 

detection algorithm on Zynq platform,” Int J 
Comput Electr Autom Control Inf Eng, vol. 9, 

no. 1, pp. 148–152, 2015. 

[30] B. Vaidya, M. Surti, P. Vaghasiya, J. Bordiya, 

and J. Jain, “Hardware acceleration of image 
processing algorithms using Vivado high level 

synthesis tool,” in 2017 International 

Conference on Intelligent Computing and 

Control Systems (ICICCS), 2017, pp. 29–34. 
[31] K. S. Ay and A. Doan, “Hardware/software co-

design of a 2d graphics system on fpga,” Int. J. 

Embed. Syst. Appl. IJESA, vol. 3, no. 1, 2013. 

[32] A. B. Amara, E. Pissaloux, and M. Atri, “Sobel 
edge detection system design and integration on 

an FPGA based HD video streaming 

architecture,” in 2016 11th International Design 

& Test Symposium (IDT), 2016, pp. 160–164. 
[33] N. A. M. Daud, F. Mahmud, and M. H. Jabbar, 

“A hardware acceleration based on high-level 

synthesis approach for glucose-insulin analysis,” 

in AIP Conference Proceedings, 2017, vol. 
1788, no. 1, p. 030087. 

[34] R. Kumar, B. K. Kaushik, and R. 

Balasubramanian, “FPGA implementation of 

image dehazing algorithm for real time 
applications,” in Applications of digital image 

processing XL, 2017, vol. 10396, p. 1039633. 

[35] A. Qamar, F. B. Muslim, F. Gregoretti, L. 

Lavagno, and M. T. Lazarescu, “High-level 
synthesis for semi-global matching: Is the juice 

worth the squeeze?,” IEEE Access, vol. 5, pp. 

8419–8432, 2016. 
[36] Y. Zheng, “The design of sobel edge extraction 

system on FPGA,” in ITM Web of Conferences, 

2017, vol. 11, p. 08001. 

[37] H. W. Oh, J. K. Kim, G. B. Hwang, and S. E. 
Lee, “The Design of a 2D Graphics Accelerator 

for Embedded Systems,” Electronics, vol. 10, 

no. 4, p. 469, 2021. 

[38] R. He and Z. Chen, “Design of Image 
transmission and Display System Based on 

ZYNQ,” 2018. 



Layla Jamal Hussein    /  NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15 

 

12 

 

 

[39] R. Ghodhbani, L. Horrigue, T. Saidani, and M. 

Atri, “Fast FPGA prototyping based real-time 
image and video processing with high-level 

synthesis,” Int J Adv Comput Sci Appl, vol. 2, 

pp. 108–116, 2020. 

[40] K. F. Lysakov, K. K. Oblaukhov, and M. Y. 
Shadrin, “Implementation of FPGA algorithms 

for identification of image distortion due to 

compression,” Optoelectron. Instrum. Data 

Process., vol. 56, no. 1, pp. 28–32, 2020. 
[41] F. Guo, W. Wan, W. Zhang, and X. Feng, 

“Research of graphics acceleration based on 

embedded system,” in 2012 International 

Conference on Audio, Language and Image 
Processing, 2012, pp. 1120–1124. 

[42] J. Monson, M. Wirthlin, and B. L. Hutchings, 

“Optimization techniques for a high level 

synthesis implementation of the Sobel filter,” in 
2013 International Conference on 

Reconfigurable Computing and FPGAs 

(ReConFig), 2013, pp. 1–6. 

[43] D. Wang, J. Xu, and K. Xu, “An FPGA-based 
hardware accelerator for real-time block-

matching and 3D filtering,” IEEE Access, vol. 

8, pp. 121987–121998, 2020. 

[44] F. B. Muslim, L. Ma, M. Roozmeh, and L. 
Lavagno, “Efficient FPGA implementation of 

OpenCL high-performance computing 

applications via high-level synthesis,” IEEE 

Access, vol. 5, pp. 2747–2762, 2017. 
[45] H. Ishida, H. Furukawa, T. Kyoden, and T. 

Tanaka, “Development of a wireless power 

transmission simulator based on finite-

difference time-domain using graphics 
accelerators,” IET Power Electron., vol. 10, no. 

14, pp. 1889–1895, 2017. 

[46] J. M. Joseph, T. Winker, K. Ehlers, C. 

Blochwitz, and T. Pionteck, “Hardware-
accelerated pose estimation for embedded 

systems using Vivado HLS,” in 2016 

International Conference on ReConFigurable 

Computing and FPGAs (ReConFig), 2016, pp. 
1–7. 

[47] A. Gorobets and P. Bakhvalov, “Heterogeneous 

CPU+ GPU parallelization for high-accuracy 

scale-resolving simulations of compressible 
turbulent flows on hybrid supercomputers,” 

Comput. Phys. Commun., vol. 271, p. 108231, 

2022. 

[48] R. Saha, P. P. Banik, and K.-D. Kim, “HLS 
based approach to develop an implementable 

HDR algorithm,” Electronics, vol. 7, no. 11, p. 

332, 2018. 

[49] R. Weber, A. Gothandaraman, R. J. Hinde, and 
G. D. Peterson, “Comparing hardware 

accelerators in scientific applications: A case 

study,” IEEE Trans. Parallel Distrib. Syst., vol. 
22, no. 1, pp. 58–68, 2010. 

[50] K. AHMED and T. Ercan, “ANFIS Analysis of 

Wireless Sensor Data with FPGA,” Acta 
Infologica, vol. 2, no. 1, pp. 22–32, 2018. 

[51] T. Ercan and A. K. Al Azzawi, “Design of an 

FPGA-based intelligent gateway for industrial 

IoT,” 2019. 
[52] P. K. Murthy, “Hardware acceleration of edge 

detection using HLS,” PhD Thesis, California 

State University, Northridge, 2019. 

[53] D. O’Loughlin, A. Coffey, F. Callaly, D. 
Lyons, and F. Morgan, “Xilinx vivado high 

level synthesis: Case studies,” 2014. 

[54] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, 

K. Vissers, and Z. Zhang, “High-level synthesis 
for FPGAs: From prototyping to deployment,” 

IEEE Trans. Comput.-Aided Des. Integr. 

Circuits Syst., vol. 30, no. 4, pp. 473–491, 2011. 

[55] W. Meeus, K. Van Beeck, T. Goedemé, J. 
Meel, and D. Stroobandt, “An overview of 

today’s high-level synthesis tools,” Des. Autom. 

Embed. Syst., vol. 16, no. 3, pp. 31–51, 2012. 

[56] R. Ben Atitallah, N. Fakhfakh, and J.-L. 
Dekeyser, “Exploring HLS Optimizations for 

Efficient Stereo Matching Hardware 

Implementation,” 2017. 

[57] R. Nane et al., “A survey and evaluation of 
FPGA high-level synthesis tools,” IEEE Trans. 

Comput.-Aided Des. Integr. Circuits Syst., vol. 

35, no. 10, pp. 1591–1604, 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Layla Jamal Hussein    /  NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15 

 

13 

 

 

 

 
Table-1: Summary of the collected data from the 40 reviewed articles. 

 

Ref Year Algorithm 
Hardware 

Platform 

Software 

tool 
2D/3D Purpose Results 

[1] 2021 
Wu's 

algorithm 

Zynq-7000 

XC7Z020 
HLS 2D 

Speed, 

Area, 

Power 

Single core area 8% and consumed 
1.6W 

10 cores area 77% consumed of 2 W. 

time is 0.31μs for 10 cores equals to 

tenth of one core time. 

[2] 2021 
Bresenham's 

Line, Circle 

SPARTAN 

3EXC3S500 
VHDL 2D Speed 

Refresh rate of 50MHz with resolution 

800x600. 

[3] 2019 
off-axis 

Bresenham’s 

Spartan3E 

XC3S500E 

MATLAB 

VHDL 
3D Speed 

Speedup 1266, Operating frequency 

35.417MHz 
Occupied area 85% 

[5] 2021 
Triangle 

Rasterization 

Vertix7(VC709)

, XM105, and 

ZYBO 

HLS, 

OpenGL 
3D 

Speed, 

area 

approximately 1.2 M gates area, with 

rate about 300 K vertices/sec, and the 

render rate is 13 Mpixels/sec. 

[6] 2022 Modeling Nvidia GPU CUDA General Speed 
speeding up simulation times support 

complex system modeling 

[7] 2018 
Affine 3D 
transform 

NVIDIAGeForc

e:1050GTX,610
GT 

LabVIEW

, Visual 
Studio, 

CUDA 

3D Speed 

Execution time 0.508 sec for 100 

million head conversion using 
LabVIEW and 0.096 sec using Visual 

Studio. 

[8] 2013 Bresenham 
Spartan3EXC3S

1600E 
OpenGL 
VHDL 

3D Speed 

speed of 68 M pixels per second 

Max. Operating Frequency: 
68.334MHz 

[9] 2018 
arbitrary axis 

rotation 

NVIDIAGeForc

e1050GTX 

LabVIEW

, CUDA 
3D Speed 

Results showed the significant speedup 

on CUDA/C++ compared to LabVIEW 

for the same model complexity 

[10] 2015 
Graphics 

Pipeline 
Spartan-6 VHDL 3D Speed real-time rendering 5000 fps 

[11] 2021 Ω-Test 
ARM Mali-450 

GPU 
OpenGL 3D 

Speed, 

Area, 

savings in GPU/Memory system of 

26.4% and speedup of 16.3% 

[13] 2013 Bresenham 

Spartan3E 

XC3S500E 

XC3S1600E 

VHDL 3D Speed 

Rendering speed 25.279M Pixel per 

Second 

and 169,896 triangles per Second. 

[14] 2010 DDA Spartan-3E VHDL 3D Speed Speed of 120M pixel per second 

[16] 2012 
Canny edge 

detector 

Xilinx Virtex-5 

XC5VLX110T  
HLS Image Speed 

IVPP can be a cost-effective, rapid 

development and prototyping platform 

[17] 2019 Bresenham 
Zybo board (Z-

7010) 

MATLAB 

VHDL 
3D Speed Fastest run time achieved is 0.31μs 

[18] 2018 Bresenham Altera NiosII Verilog 3D Area 
The logical usage was around (50%), 

and memory usage was 100% 

[19] 2019 Bresenham FPGA 
OpenGL, 
VHDL 

2D Speed 

0.6 ms operation time to draw 41 

different lines with 166 MHz operation 
frequency. 

[20] 2020 
Barycentric 

Rasterizer 

Max10 

Stratix V, 

Cyclone V 

OpenGL 

HDL 

coder 

3D 
Speed 

Power 

Pixel processing is 80%. Power 

consumption conserve 2% 

[21] 2011 
Cohen-

Sutherland 

Spartan3EXC3S

200E 
VHDL 2D Speed 

designed unit is capable of clipping 

(232524) line segments per second. 

[23] 2011 CORDIC Spartan3E VHDL 3D Speed 
Maximum speedup 5 

speed of 10 M vertex per second 

[26] 2012 
Sobel edge 

detection 

Virtex2Pro/Virt

ex5 
HLS Image Speed 

Using HLS: code is reduced 

dramatically, you can optimize a 

design, and Verification times reduced 

[28] 2016 

DFS, BFS, 

and Merge 

sort 

Virtex7:XC7VX

415T, 

XC7VX330T, 

XC7V690T 

HLS 
Video 

image 

Area 

Speed 

Parallelizing gives better results and 

almost reaches FPGA’s BRAM, in turn 

lower clock frequencies. 

[29] 2015 
Canny edge 

detection 

Zynq AP SoC 

XC7Z020 
HLS Image 

Area 

Speed 

CPU utilization drop down, and frame 

rate jumps to 60 fps of 1080p 
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[30] 2017 

Histogram, 

(Equalization, 

Smoothing 

Filtering) 

ZynqZC602, 

Virtex7VC709, 

Virtex6ML605 

Spartan6SP605 

HLS 

OpenCV 
Image 

Speed 

 

ZynqZC602 8.73ns time, frq: 

114.5MHz  
Vertex7VC709 8.18 ns time, frq: 

122.2MHz 

Virtex6ML605 time 8.39ns and 119.2 

MHz 
Spartan6SP605 8.56 ns time, frq: 

116.8MHz 

[31] 2013 
Bresenham 

BitBLT 

VirtexII Pro 

FPGA 
C 2D 

Area 

Speed 

Bresenham core: 500pixels in 0.1ms. 

BitBLT operation: 91 clock cycles per 
pixel 

[32] 2016 
Sobel edge 

detection 
ZYBO ZC7010 HLS Image Speed 

Max Clock Frequency in NvidiaM840 

is 110MHz and in Proposed Sobel is 

150MHz 

[33] 2016 
Hovorka 

(glucose-insulin) 
Xilinx Virtex-7 HLS General Speed 

high-level synthesis beneficial to design 

an ODE function for HovorkaModel. 

[34] 2017 DCP 
Zynq ZC702, 

Zed board 
HLS/MA

TLAB 
Image 

Speed 
Area 

speed of 29 fps for resolution of 

1920x1080 
use 9 18K_BRAM, 97 DSP_48, 6508 

FFs and 8159LUTs 

[35] 2017 SGM 
Xilinx ZynqTM 

7020 
HLS 3D Speed 

performance 30 frames/s for resolution 

of 640x480 with depth of 128 pixels per 
frame. 

[36] 2017 
Sobel Edge 

Detection 
Zed board HLS Image Speed Speedup of 80 

[37] 2021 Bresenham 
Xilinx Zynq 

xc7z010clg400 
MATLAB
, Verilog 

2D 
Speed, 
Area 

Operating frequency 100 MHz, 
Estimated gate account 75,406 

[38] 2018 H.264 
ZYNQ7000-

XC7Z020 
HLS Image Speed 

delay of image transmission and display 

is 0.28 ns, while open-source library is 

0.33 ns 

[39] 2020 
Histogram 

Equalization 

Zed Board 

xc7z020clg4842 

HLS, 

MATLAB 
Image Speed 

Max frequency: 302MHz for YCbCr to 

RGB Max frequency: 260MHz for 

RGB to YCbCr 

[40] 2020 
Television image 

quality control 

Xilinx Zynq-

7000 
HLS Image Speed 

control of video signals at SD-SDI 
(576i) & 

HD-SDI (1080i) interfaces 

[41] 2012 
Mobile Game 

Pipeline 

XUPV5-X110T 

ML505 
Verilog 2D Speed 

Pixels rate 90 M/S when system clock 

was 100 MHz 

[42] 2013 
Sobel Edge 

detection 
Zed Board HLS Image Speed 

Performance ranged: 10.9 fps to 388 

fps. 

[43] 2016 
BM3D 

algorithm 
Intel’s Arria-10 

GX1150 
OpenCL 

HLS 
Image 

Speed 
Power 

1.2× performance boost and an 

outstanding 8.3× reduction in energy 
dissipation 

[44] 2017 
K-Nearest 

Neighbor 
Virtex-7 690t HLS General 

Speed 

Power 

The result showed that FPGA is better 

than GPU for implementation time and 

energy calculation. 

[45] 2017 WPT 
Nvidia GTX 

1080 GPU 
CUDA General Speed 

simulation results agree with 

experimental results. largest difference 

between them was 3 and 8% 

[46] 2016 
pose 

estimation 
Zed oared HLS 3D 

Speed 

power 

speedup of 1.6, manual tracking of 17 

fps, and power is reduced. 

[47] 2022 

heterogeneous

 multilevel 

parallel 
distributing 

algorithm 

NVIDIA, AMD, 
Intel GPUs 

OpenCL General Speed 

Parallel performance on super-

computers using up to 10,000 cores and 
multiple GPUs with comparable general 

performance 
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