
6

NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

DOI: https://doi.org/10.56286/ntujet.v2i1

Graphics Accelerators: A Review

1st Layla Jamal Hussein1, 2nd Basma MohammadKamal Younis2, 3rd Ahmed Khazal Younis3
1. M.tech. Student, Department of Computer Technology Engineering, Engineering Technical College, Northern

Technical University, Iraq, 2. Department of Computer Technology Engineering, Engineering Technical College,

Northern Technical University, Iraq, 3. Department of Computer Technology Engineering, Engineering

Technical College, Northern Technical University, Iraq

Article Informations A B S T R A C T

©2023 NTU JOURNAL OF ENGINEERING AND TECHNOLOGY, NORTHERN TECHNICAL UNIVERSITY. THIS

IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE: https://creativecommons.org/licenses/by/4.0/

The spreadability of large and diverse computer graphics applications, highly

powerful and programmable hardware platforms, rapid advances in their

programing techniques have all permitted design different hardware accelerators

for many applications. While the rapid increase in “graphics performance

accelerators “have made it a compelling platform for computational

requirements tasks in several applications areas. Therefore, graphics

accelerators have attracted us because of their important applications. In this

paper tries to reach those objectives through a regular review of similar studies

within this field of research. The process started by intensely surfing the famous

specialized digital libraries, as a result, “40 related works “were collected and

examined upon several important technical subjects: technical motivations that

underlie the chosen graphics algorithm, the software development that led to

interest in graphic algorithms, hardware platform used , programming tool, and

the design intended for 2D or 3D graphics. We believe that the software

techniques presented in this paper will be helpful for researchers who plan to

develop new “graphics accelerators algorithms “. Also, it gives the required

introductions in developing “hardware graphics accelerators “and help select

materials, techniques, and tools.

Received: 16-12- 2022,
Accepted: 09-01-2023,

Published online: 15-03-2023

Corresponding author:
Name: Layla Jamal Hussein

Affiliation : Engineering

Technical College ,Northern
Technical University

Email: layla.jamal@ntu.edu.iq

Key Words:
Graphics Accelerator,

Computer Graphics Algorithms,

HLS,
FPGA,

GPU.

https://doi.org/10.56286/ntujet.v2i1
https://creativecommons.org/licenses/by/4.0/
mailto:layla.jamal@ntu.edu.iq

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

7

1. Introduction

Graphics accelerators are hardware

components optimized for doing the calculations

for 2D or 3D computer graphics[1]. The graphic

accelerator controls the display system and

supports all processes and functions needed. Some

of them can support multiple display devices [2] .

GPUs also can be used to display stereoscopic

imagery, where two images are calculated to show

them to the corresponding eye. The stereoscopic

graphics accelerator needs distinct capabilities

more than a traditional one [3].

Graphics algorithms are characterized by the

complexity of dealing with a massive amount of

data on hand, and their need for high-level

computing so distinctive processors for computer

graphics are designed with certain accelerators for

each specific algorithm [4], [5]

Today, Computer graphics accelerators chips

are may be the most powerful computational

hardware [6], [7]. These chips are known as

Graphics Processing Units (GPUs). It moved from

supplementary parties to accident , strong , and

programmable processors . Many researchers

and designers have become interested in using

graphics hardware for general purpose. In latest

years, there has been an increase in interest in such

research endeavors, termed GPGPU (General

Purpose GPU Computing) [5], [7].

The purpose of the current study is to review a

group of graphics accelerators that focuses on

hardware ones and their various applications,

whether for computer graphics, image processing,

or even for general uses. This paper composes six

sections; the first describes the motivation to

present this review, the second involves the

theoretical aspects of the basic graphics algorithms

used in the gathered papers, the third illustrates the

hardware platform used. Also, it includes a

practical part for each architecture, section four

presents the experimental results and analysis of

the performance obtained through the methods

reviewed in the previous sections. Finally, section

five contains conclusions.

2. Theory

Computer graphics are known as pictorial

representations or graphical representations of

objects. In computer graphics, a bitmap display

system is used to generate and display images [8].

The diverse applications of computer graphics

hardware are achieved by rapid optimization in

programmability and performance for vital

elements of graphics hardware [3], [9]. This

section will expla the development of computer

graphics algorithms and describe their basics.

2.1 Graphics Pipeline

Graphics pipeline are a basic concept in

computer graphics conceptually organized as

several stages in a pipeline way through which data

and commands that describe the scene pass when

presented. The term rendering pipeline is also used.

These stages are the application, geometry and

raster stages [10]- [12]. They are presented in

figure 1.

The application stage only deals with the

object specification directly as the objects are

created from connected geometric shapes and

specifications to appropriate another stage. Figure 1

illustrates these stages implemented in software

[10], [12].

The geometric stage: is the stage responsible

for most operations of the per-primitive or per-

vertex. Basically, in this stage, matrix

transformations are applied to the primers received

from the application stage, resulting in the mapping

of the input polygons to the 2D display. This stage

has many functional substages: the model and

transforms, lighting, projection, clipping, and the

screen mapping stages. In the model and transform

stage, the coordinates are converted from input

model coordinates to a common system coordinate.

In the lighting stage, light sources and properties of

the material are calculated. In the projection stage,

a perspective type is used to transform 3D objects

into a 2D plane, from which we are viewing. The

clipping stage removes objects that will not be

visible from the scene this operation can be done

either by discarding objects that are outside of the

field of view, or too far a way, or clipping objects

that intersect with any clipping plane. Finally, in

the screen mapping stage, the scene data is

transformed to its equivalent screen coordinates.

The geometric stage has usually implemented in

software, although there are high-performance

Figure 1: A typical 3D graphics pipeline

[12].

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

8

graphical systems that implement this conceptual

stage in hardware. At this stage floating-point

calculations are performed [12].

The goal of the rasterizer stage is to assign

correct colors to the pixels on the screen to render

an image correctly. This process is called

rasterisation or scan conversion. Unlike the

geometry stage, which handles per-primitive

operations, the rasterizer stage handles per-pixel

operations. During rasterisation, the data

represented by the object database (colors and

texture) is transformed into a pixel-based image. A

scan-line algorithm is commonly used to give the

final image. The pixel has scanned a line at a time

and their color is determined from the polygons

that contribute to that part of the screen. The 2D

images of the projected primitives are stored in a

memory called the frame buffer, which is read

periodically by the display controller to form the

image on the screen. The rasterisation is concerned

only with the production of a series of frame buffer

addresses and values known as (fragments). Each

fragment is fed to the "depth-buffer" or “Z-buffer

“to solve the visibility problem. Because of the

sampling process involved by rasterisation,

fragment values may suffer from an aliasing

phenomenon (e.g., the stair-case effect of lines

drawn on a raster screen), this will be overcome in

the next process which is called “anti-aliasing “.

Finally, the surviving part of the frame buffer, after

all the primers have been processed, will produce

the final image. The rasterizer stage is

implemented in "hardware" wherever exists the

need for "graphics acceleration" and it usually

involves only integer arithmetic [12].

2.2 Graphics Algorithm

The references are carefully studied. Figure 2

illustrates the percentages of using graphical

accelerators in various applications; for computer

graphics, image processing, or general applications.

The main algorithms used in the design of graphics

accelerators will be presented in this section. Figure

3, depicts the percentage use of these algorithms in

hardware accelerators design.

Figure 2. Proportion use of computer graphics

accelerator applications for all the reviewed studies.

Figure 3: Proportion use of computer graphics algorithm
in hardware design for all the reviewed studies.

2.2.1 Line Generation Algorithms

This algorithm is for drawing a line on discrete

graphics devices. It rasterizes lines in one color [8],

[13], [14]. Improving representation with multiple

degrees of color requires an advanced process,

spatially anti-aliasing [1]. The most famous line

algorithms are DDA [14] and Bresenham [8], [15],

both of them used for 2D or 3D [16], [3], but the

latter is used in designing graphics accelerators

because it uses integer calculations without

affecting the accuracy of line drawing. Many

researchers have either used [3], [13] or developed

[8], [17] Bresenham's algorithm. The development

is either to work in 3D or be implemented using

FSM [18] or remove aliasing by integrating it with

Wu's algorithm [1]. The flowchart for this

algorithm in its simple 2D form can find in [1], 3D

in [8].

2.2.2 Circle Generation Algorithms

A circle can be created using two algorithms:

Bresenham, and the midpoint circle algorithms.

The Bresenham 2D algorithm is used to draw lines

to generate the circuit by assigning parameters at

each sampling step. Square roots are required to

calculate distances in pixels. The Bresenham circle

algorithm avoids square root calculations by

comparing square distances to pixels. Therefore,

the Bresenham‘s algorithm is used in the design of

graphics accelerators [2], [19].

2.2.3 Clipping Algorithms

Removing objects that will not be visible from

the scene can perform this operation by clipping

objects that intersect with any cutting level. There

are two kinds of clipping (Hardware clipping and

Software clipping). The hardware clipping machine

is a two-dimensional automatic clipping machine.

The rectangular clipping screen can be defined by

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

9

four-piece records where each record is loaded with

the value of the border it represents. A software

clipping is essential for two reasons. The first is to

clip those polygons that are partly in the positive

space and partly in the negative space and cannot

be properly handled by the hardware cutting

machine, and the second reason for using software

clipping is that it is necessary to prevent the

projected header values of any polygon from

exceeding the capacity of the devices or the

acceptable range of device coordinates. The most

commonly used algorithm in the design of graphics

accelerators is Cohen Sutherland [20], [21].

2.2.4 Transformation Algorithms

Usually, two main categories of transformation

are used in graphics systems. Coordinate

transformations deal with the shift from one

coordinate system to another. In the second order,

geometric transformations are applied to entities

within a single coordinate system. Many graphics

applications include a series of geometric

transformations. Animations, e.g., may require

translating and rotating an object. So, geometric

transformations are the most commonly used

algorithms in the design of graphics accelerators

[22], [23], [7], [9].

2.2.5 Modeling Algorithms

One of the major concepts in computer

graphics is the modeling of objects and images.

This means describing objects and images to

produce a visual presentation [24]. One way to do

this is to use a set of primitive or geometric shapes

to execute on a computer but flexible to represent

or model a variety of objects. This technique

describes a 3D object as a set of surfaces that

separate the internal object from the environment.

Typical examples of boundary representations are

polygon faces [25].

2.2.6 Projection Algorithms

Projection is the stage in which an object

transforms from a three-dimensional space to its

image in a two-dimensional space, because the

surface of the display is only two-dimensional [3],

[26]. This provides the viewer with a depth signal.

Therefore, this type of projection is used in most

hardware accelerators [3], [13].

2.2.7 Hidden Surface Detection Algorithms

One of the most common problems in

computer graphics is the removal of hidden parts of

body images. All parts of the object are displayed,

including many parts that must be invisible. To

remove these parts, you must apply a hidden line or

hidden surface algorithm. The algorithm works on

different types of scene models, generating

different output forms [27]. Among these

algorithms, the Z-Buffer algorithm is used to solve

the visibility problem and is also used in the design

of hardware graphics accelerators. The Z-buffer is a

dedicated piece of memory that is divided into 16,

24 or 32-bit words, each of which is linked to a

different pixel on the screen. The Z-buffer store is

used to store the depth of the 3D point that is

displayed on the corresponding pixel. A density

buffer is used to store the density of this pixel in

each pixel position. The frame buffer can be used

to display objects and remove hidden objects by

scanning all faces and updating the pixel value only

when the depth of the point that appears on the

pixel is less than the depth stored in the pixel z

buffer. The front faces of the object can be

converted into an image in any order [12], [13].

3. Implementation of graphics

hardware accelerators

Table-1 in appendix illustrates a summary

of the collected data from “ 40 reviewed works

“ [1]-[3], [5]-[11], [13], [14],[16]-[21], [23], [26],

[28]-[47]. Following sections describe the details

results obtained from these researches that we

think are useful for designers work in this

field.

3.1 Hardware platforms

The hardware platforms are several of a

compatible device on which software applications

can excudit. Each hardware platform has its own

program language, so a special platform software

should be created that includes a standard type of

processor and hardware parts associated with it

[48], [49]. After reading the researches under study

from hardware platforms used. Figure 4 illustrates

these platforms used in the design of graphics

accelerators. This figure shows the dominance of

FPGAs then GPUs.

Figure 4: Proportion use of hardware platforms used in
graphics accelerator for all the reviewed studies.

3.2 Software design tools

The software environment is used to write and

run applications. These include software tools such

as graphical interface builders, pool creators, class

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

10

libraries, and application development utilities.

Figure 5 shows the software platforms used in the

design of graphics accelerators, which illustrates

the dominance of VHDL and HLS on these

platforms.

Figure 5: Proportion use of Software platforms used in
graphics accelerator design for all the reviewed studies.

4. Results and analysis

The graphics accelerators of the reviewed

references have been built according to the

researcher’s need, either to speed up a graphics

algorithm, hardware system, to fit the space of the

hardware platform used in the design, or to reduce

the consumed power as shown in Figure 6. Speed is

the dominant measure used by researchers during

design. By studying references, the improved

speed increased speed of performance, as high

speed, scalability and efficiency can be achieved

using FPGA devices compared to other

implementation-based computing mechanisms

[50]- [52]. Designers may increase performance,

power, or cost to reduce design time [53]- [55]. It

occupies 74% of the total proportion of the research

under study. Power consumption is a major factor

for battery-based systems [55], [56]. Results of the

power improvement, are also presented by studying

the references in which we observed a significant

reduction in power consumption while maintaining

system performance. This measurement tool

occupies 9% of the total proportion of the research

under study. The results from the references study

showed how improvement guidelines applied to the

timing and improvement of the area. Resources can

be allocated as needed (which is subject to the area

or energy) [57]. It occupies 17% of the total

proportion of the research under study.

Figure 6: Proportion main purpose used in graphics
accelerator design for all the reviewed studies.

5. Conclusion

We provided an extensive survey and

classification to develop new algorithms for

graphics accelerators design. A summary was

provide in the development of hardware graphics

accelerators. We then described the improvements

that modern research focuses on. The purpose of

reviewing articles published in the past 10 years is

to help choose technology and tools in the

development of these accelerators. Figure 7 in the

appendix show the flowchart for the system.

References

[1] B. M. Younis and A. K. Younis, “Hardware
accelerator for anti-aliasing Wu’s line algorithm

using FPGA,” Telkomnika, vol. 19, no. 2, pp.

672–682, 2021.

[2] A. H. Ali and R. Z. Mahmood, “Bresenham’s
Line and Circle Drawing Algorithm using

FPGA,” AL-Rafidain J. Comput. Sci. Math.,

vol. 15, no. 2, pp. 39–53, 2021.

[3] M. R. Ahmed and B. M. Younis, “3D Stereo
Rendering Using FPGA,” Comput. Eng. Intell.

Syst., vol. 10, no. 3, p. 19, 2019.

[4] J. Vince and J. A. Vince, Mathematics for

computer graphics, vol. 3. Springer, 2010.
[5] A. M. Ibrahim and S. E. D. Habib, “Design and

Implementation Of Cairo University Graphics

Processing (CUGPU) Using HLS Approach,” in

2021 3rd Novel Intelligent and Leading
Emerging Sciences Conference (NILES), 2021,

pp. 1–3.

[6] P. Renc, T. Pęcak, A. De Rango, W. Spataro, G.

Mendicino, and J. Wąs, “Towards efficient
GPGPU Cellular Automata model

implementation using persistent active cells,” J.

Comput. Sci., p. 101538, 2022.

[7] S. Nawfal and F. Ali, “The acceleration of 3D
graphics transformations based on CUDA,” J.

Eng. Des. Technol., 2018.

[8] B. M. K. Younis and L. N. S. M. Sheet,

“Hardware Implementation of 3D-Bresenham’s

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

11

Algorithm Using FPGA,” Tikrit J. Eng. Sci.,

vol. 20, no. 2, pp. 37–47, 2013.
[9] S. N. Alrawy and F. H. Ali, “GPU Accelerated

Rotation About an Arbitrary Axis,” in 2018

International Conference on Advanced Science

and Engineering (ICOASE), 2018, pp. 36–41.
[10] V. Kasik and A. Kurecka, “FPGA

Implementation of a Simple 3D Graphics

Pipeline,” Adv. Electr. Electron. Eng., vol. 13,

no. 1, pp. 39–47, 2015.
[11] D. Corbalan-Navarro, J. L. Aragon, M.

Anglada, E. De Lucas, J.-M. Parcerisa, and A.

Gonzalez, “Omega-Test: A Predictive Early-Z

Culling to Improve the Graphics Pipeline
Energy-Efficiency,” IEEE Trans. Vis. Comput.

Graph., 2021.

[12] D. Crisu, S. Cotofana, and S. Vassiliadis, “A

hardware/software co-simulation environment
for graphics accelerator development in ARM-

based SOCs,” 2002.

[13] B. M. Kamal and N. Salim, “A real time

dynamic 3D graphics processor using FPGA,”
Int. J. Res. Dev. Eng. IJRDE, vol. 2, no. 1, pp.

1–12, 2013.

[14] F. Hamid Ali, “Depth Buffer DDA Based on

FPGA,” Al-Rafidain Eng. J. AREJ, vol. 19, no.
5, pp. 28–39, 2011.

[15] M. Daniel, “A Mathematical Overview of

Bresenham Algorithms in the Determination of

Active Pixel Positions”.
[16] C. Desmouliers, E. Oruklu, S. Aslan, J. Saniie,

and F. M. Vallina, “Image and video processing

platform for field programmable gate arrays

using a high-level synthesis,” IET Comput.
Digit. Tech., vol. 6, no. 6, pp. 414–425, 2012.

[17] S. Ismae, O. Tareq, and Y. T. Qassim,

“Hardware/software co-design for a parallel

three-dimensional bresenham’s algorithm.,” Int.
J. Electr. Comput. Eng. 2088-8708, vol. 9, no. 1,

2019.

[18] K. Panek, B. Flak, S. Koryciak, and K. Wiatr,

“Basic 3D graphics processor implemented on
small FPGA,” Meas. Autom. Monit., vol. 64,

2018.

[19] J. K. Kim, J. H. Oh, J. H. Yang, and S. E. Lee,

“2D Line draw hardware accelerator for tiny
embedded processor in consumer electronics,”

in 2019 IEEE International Conference on

Consumer Electronics (ICCE), 2019, pp. 1–2.

[20] A. E. Beasley, C. T. Clarke, and R. J. Watson,
“An OpenGL Compliant Hardware

Implementation of a Graphic Processing Unit

Using Field Programmable Gate Array–System

on Chip Technology,” ACM Trans.
Reconfigurable Technol. Syst. TRETS, vol. 14,

no. 1, pp. 1–24, 2020.

[21] A. I. Dawod, “Hardware Implementation Of
Line Clipping A lgorithm By Using FPGA,”

Tikrit J. Eng. Sci., vol. 18, no. 3, pp. 89–105,

2011.

[22] F. H Ali and A. I Dawod, “FPGA Based
Implementation Of Concatenation Matrix,” Al-

Rafidain Eng. J. AREJ, vol. 18, no. 2, pp. 15–

31, 2010.

[23] D. Ali and H. Fakhrulddin, “Transformation
matrix for 3D computer graphics based on

FPGA,” Al-Rafidain Eng. J. AREJ, vol. 20, no.

5, pp. 1–15, 2012.
[24] S. Dhar and S. Pal, “Surface Reconstruction:

Roles in the Field of Computer Vision and

Computer Graphics,” Int. J. Image Graph., vol.

22, no. 01, p. 2250008, 2022.
[25] J. Romero, D. Tzionas, and M. J. Black,

“Embodied hands: Modeling and capturing

hands and bodies together,” ArXiv Prepr.

ArXiv220102610, 2022.
[26] F. Jabar, J. Ascenso, and M. P. Queluz,

“Perceptual analysis of perspective projection

for viewport rendering in 360° images,” in 2017

IEEE International Symposium on Multimedia
(ISM), 2017, pp. 53–60.

[27] L. M. Saeed and F. H. Ali, “Evaluation of

Hidden Surface Removal Methods Using Open

GL,” Al-Rafidain Eng. J. AREJ, vol. 26, no. 2,
pp. 300–308, 2021.

[28] K. Georgopoulos et al., “An evaluation of

vivado HLS for efficient system design,” in

2016 International Symposium ELMAR, 2016,
pp. 195–199.

[29] H. M. Abdelgawad, M. Safar, and A. M.

Wahba, “High level synthesis of canny edge

detection algorithm on Zynq platform,” Int J
Comput Electr Autom Control Inf Eng, vol. 9,

no. 1, pp. 148–152, 2015.

[30] B. Vaidya, M. Surti, P. Vaghasiya, J. Bordiya,

and J. Jain, “Hardware acceleration of image
processing algorithms using Vivado high level

synthesis tool,” in 2017 International

Conference on Intelligent Computing and

Control Systems (ICICCS), 2017, pp. 29–34.
[31] K. S. Ay and A. Doan, “Hardware/software co-

design of a 2d graphics system on fpga,” Int. J.

Embed. Syst. Appl. IJESA, vol. 3, no. 1, 2013.

[32] A. B. Amara, E. Pissaloux, and M. Atri, “Sobel
edge detection system design and integration on

an FPGA based HD video streaming

architecture,” in 2016 11th International Design

& Test Symposium (IDT), 2016, pp. 160–164.
[33] N. A. M. Daud, F. Mahmud, and M. H. Jabbar,

“A hardware acceleration based on high-level

synthesis approach for glucose-insulin analysis,”

in AIP Conference Proceedings, 2017, vol.
1788, no. 1, p. 030087.

[34] R. Kumar, B. K. Kaushik, and R.

Balasubramanian, “FPGA implementation of

image dehazing algorithm for real time
applications,” in Applications of digital image

processing XL, 2017, vol. 10396, p. 1039633.

[35] A. Qamar, F. B. Muslim, F. Gregoretti, L.

Lavagno, and M. T. Lazarescu, “High-level
synthesis for semi-global matching: Is the juice

worth the squeeze?,” IEEE Access, vol. 5, pp.

8419–8432, 2016.
[36] Y. Zheng, “The design of sobel edge extraction

system on FPGA,” in ITM Web of Conferences,

2017, vol. 11, p. 08001.

[37] H. W. Oh, J. K. Kim, G. B. Hwang, and S. E.
Lee, “The Design of a 2D Graphics Accelerator

for Embedded Systems,” Electronics, vol. 10,

no. 4, p. 469, 2021.

[38] R. He and Z. Chen, “Design of Image
transmission and Display System Based on

ZYNQ,” 2018.

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

12

[39] R. Ghodhbani, L. Horrigue, T. Saidani, and M.

Atri, “Fast FPGA prototyping based real-time
image and video processing with high-level

synthesis,” Int J Adv Comput Sci Appl, vol. 2,

pp. 108–116, 2020.

[40] K. F. Lysakov, K. K. Oblaukhov, and M. Y.
Shadrin, “Implementation of FPGA algorithms

for identification of image distortion due to

compression,” Optoelectron. Instrum. Data

Process., vol. 56, no. 1, pp. 28–32, 2020.
[41] F. Guo, W. Wan, W. Zhang, and X. Feng,

“Research of graphics acceleration based on

embedded system,” in 2012 International

Conference on Audio, Language and Image
Processing, 2012, pp. 1120–1124.

[42] J. Monson, M. Wirthlin, and B. L. Hutchings,

“Optimization techniques for a high level

synthesis implementation of the Sobel filter,” in
2013 International Conference on

Reconfigurable Computing and FPGAs

(ReConFig), 2013, pp. 1–6.

[43] D. Wang, J. Xu, and K. Xu, “An FPGA-based
hardware accelerator for real-time block-

matching and 3D filtering,” IEEE Access, vol.

8, pp. 121987–121998, 2020.

[44] F. B. Muslim, L. Ma, M. Roozmeh, and L.
Lavagno, “Efficient FPGA implementation of

OpenCL high-performance computing

applications via high-level synthesis,” IEEE

Access, vol. 5, pp. 2747–2762, 2017.
[45] H. Ishida, H. Furukawa, T. Kyoden, and T.

Tanaka, “Development of a wireless power

transmission simulator based on finite-

difference time-domain using graphics
accelerators,” IET Power Electron., vol. 10, no.

14, pp. 1889–1895, 2017.

[46] J. M. Joseph, T. Winker, K. Ehlers, C.

Blochwitz, and T. Pionteck, “Hardware-
accelerated pose estimation for embedded

systems using Vivado HLS,” in 2016

International Conference on ReConFigurable

Computing and FPGAs (ReConFig), 2016, pp.
1–7.

[47] A. Gorobets and P. Bakhvalov, “Heterogeneous

CPU+ GPU parallelization for high-accuracy

scale-resolving simulations of compressible
turbulent flows on hybrid supercomputers,”

Comput. Phys. Commun., vol. 271, p. 108231,

2022.

[48] R. Saha, P. P. Banik, and K.-D. Kim, “HLS
based approach to develop an implementable

HDR algorithm,” Electronics, vol. 7, no. 11, p.

332, 2018.

[49] R. Weber, A. Gothandaraman, R. J. Hinde, and
G. D. Peterson, “Comparing hardware

accelerators in scientific applications: A case

study,” IEEE Trans. Parallel Distrib. Syst., vol.
22, no. 1, pp. 58–68, 2010.

[50] K. AHMED and T. Ercan, “ANFIS Analysis of

Wireless Sensor Data with FPGA,” Acta
Infologica, vol. 2, no. 1, pp. 22–32, 2018.

[51] T. Ercan and A. K. Al Azzawi, “Design of an

FPGA-based intelligent gateway for industrial

IoT,” 2019.
[52] P. K. Murthy, “Hardware acceleration of edge

detection using HLS,” PhD Thesis, California

State University, Northridge, 2019.

[53] D. O’Loughlin, A. Coffey, F. Callaly, D.
Lyons, and F. Morgan, “Xilinx vivado high

level synthesis: Case studies,” 2014.

[54] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,

K. Vissers, and Z. Zhang, “High-level synthesis
for FPGAs: From prototyping to deployment,”

IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 30, no. 4, pp. 473–491, 2011.

[55] W. Meeus, K. Van Beeck, T. Goedemé, J.
Meel, and D. Stroobandt, “An overview of

today’s high-level synthesis tools,” Des. Autom.

Embed. Syst., vol. 16, no. 3, pp. 31–51, 2012.

[56] R. Ben Atitallah, N. Fakhfakh, and J.-L.
Dekeyser, “Exploring HLS Optimizations for

Efficient Stereo Matching Hardware

Implementation,” 2017.

[57] R. Nane et al., “A survey and evaluation of
FPGA high-level synthesis tools,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol.

35, no. 10, pp. 1591–1604, 2015.

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

13

Table-1: Summary of the collected data from the 40 reviewed articles.

Ref Year Algorithm
Hardware

Platform

Software

tool
2D/3D Purpose Results

[1] 2021
Wu's

algorithm

Zynq-7000

XC7Z020
HLS 2D

Speed,

Area,

Power

Single core area 8% and consumed
1.6W

10 cores area 77% consumed of 2 W.

time is 0.31μs for 10 cores equals to

tenth of one core time.

[2] 2021
Bresenham's

Line, Circle

SPARTAN

3EXC3S500
VHDL 2D Speed

Refresh rate of 50MHz with resolution

800x600.

[3] 2019
off-axis

Bresenham’s

Spartan3E

XC3S500E

MATLAB

VHDL
3D Speed

Speedup 1266, Operating frequency

35.417MHz
Occupied area 85%

[5] 2021
Triangle

Rasterization

Vertix7(VC709)

, XM105, and

ZYBO

HLS,

OpenGL
3D

Speed,

area

approximately 1.2 M gates area, with

rate about 300 K vertices/sec, and the

render rate is 13 Mpixels/sec.

[6] 2022 Modeling Nvidia GPU CUDA General Speed
speeding up simulation times support

complex system modeling

[7] 2018
Affine 3D
transform

NVIDIAGeForc

e:1050GTX,610
GT

LabVIEW

, Visual
Studio,

CUDA

3D Speed

Execution time 0.508 sec for 100

million head conversion using
LabVIEW and 0.096 sec using Visual

Studio.

[8] 2013 Bresenham
Spartan3EXC3S

1600E
OpenGL
VHDL

3D Speed

speed of 68 M pixels per second

Max. Operating Frequency:
68.334MHz

[9] 2018
arbitrary axis

rotation

NVIDIAGeForc

e1050GTX

LabVIEW

, CUDA
3D Speed

Results showed the significant speedup

on CUDA/C++ compared to LabVIEW

for the same model complexity

[10] 2015
Graphics

Pipeline
Spartan-6 VHDL 3D Speed real-time rendering 5000 fps

[11] 2021 Ω-Test
ARM Mali-450

GPU
OpenGL 3D

Speed,

Area,

savings in GPU/Memory system of

26.4% and speedup of 16.3%

[13] 2013 Bresenham

Spartan3E

XC3S500E

XC3S1600E

VHDL 3D Speed

Rendering speed 25.279M Pixel per

Second

and 169,896 triangles per Second.

[14] 2010 DDA Spartan-3E VHDL 3D Speed Speed of 120M pixel per second

[16] 2012
Canny edge

detector

Xilinx Virtex-5

XC5VLX110T
HLS Image Speed

IVPP can be a cost-effective, rapid

development and prototyping platform

[17] 2019 Bresenham
Zybo board (Z-

7010)

MATLAB

VHDL
3D Speed Fastest run time achieved is 0.31μs

[18] 2018 Bresenham Altera NiosII Verilog 3D Area
The logical usage was around (50%),

and memory usage was 100%

[19] 2019 Bresenham FPGA
OpenGL,
VHDL

2D Speed

0.6 ms operation time to draw 41

different lines with 166 MHz operation
frequency.

[20] 2020
Barycentric

Rasterizer

Max10

Stratix V,

Cyclone V

OpenGL

HDL

coder

3D
Speed

Power

Pixel processing is 80%. Power

consumption conserve 2%

[21] 2011
Cohen-

Sutherland

Spartan3EXC3S

200E
VHDL 2D Speed

designed unit is capable of clipping

(232524) line segments per second.

[23] 2011 CORDIC Spartan3E VHDL 3D Speed
Maximum speedup 5

speed of 10 M vertex per second

[26] 2012
Sobel edge

detection

Virtex2Pro/Virt

ex5
HLS Image Speed

Using HLS: code is reduced

dramatically, you can optimize a

design, and Verification times reduced

[28] 2016

DFS, BFS,

and Merge

sort

Virtex7:XC7VX

415T,

XC7VX330T,

XC7V690T

HLS
Video

image

Area

Speed

Parallelizing gives better results and

almost reaches FPGA’s BRAM, in turn

lower clock frequencies.

[29] 2015
Canny edge

detection

Zynq AP SoC

XC7Z020
HLS Image

Area

Speed

CPU utilization drop down, and frame

rate jumps to 60 fps of 1080p

Layla Jamal Hussein / NTU Journal of Engineering and Technology (2023) 2 (1) : 6-15

14

[30] 2017

Histogram,

(Equalization,

Smoothing

Filtering)

ZynqZC602,

Virtex7VC709,

Virtex6ML605

Spartan6SP605

HLS

OpenCV
Image

Speed

ZynqZC602 8.73ns time, frq:

114.5MHz
Vertex7VC709 8.18 ns time, frq:

122.2MHz

Virtex6ML605 time 8.39ns and 119.2

MHz
Spartan6SP605 8.56 ns time, frq:

116.8MHz

[31] 2013
Bresenham

BitBLT

VirtexII Pro

FPGA
C 2D

Area

Speed

Bresenham core: 500pixels in 0.1ms.

BitBLT operation: 91 clock cycles per
pixel

[32] 2016
Sobel edge

detection
ZYBO ZC7010 HLS Image Speed

Max Clock Frequency in NvidiaM840

is 110MHz and in Proposed Sobel is

150MHz

[33] 2016
Hovorka

(glucose-insulin)
Xilinx Virtex-7 HLS General Speed

high-level synthesis beneficial to design

an ODE function for HovorkaModel.

[34] 2017 DCP
Zynq ZC702,

Zed board
HLS/MA

TLAB
Image

Speed
Area

speed of 29 fps for resolution of

1920x1080
use 9 18K_BRAM, 97 DSP_48, 6508

FFs and 8159LUTs

[35] 2017 SGM
Xilinx ZynqTM

7020
HLS 3D Speed

performance 30 frames/s for resolution

of 640x480 with depth of 128 pixels per
frame.

[36] 2017
Sobel Edge

Detection
Zed board HLS Image Speed Speedup of 80

[37] 2021 Bresenham
Xilinx Zynq

xc7z010clg400
MATLAB
, Verilog

2D
Speed,
Area

Operating frequency 100 MHz,
Estimated gate account 75,406

[38] 2018 H.264
ZYNQ7000-

XC7Z020
HLS Image Speed

delay of image transmission and display

is 0.28 ns, while open-source library is

0.33 ns

[39] 2020
Histogram

Equalization

Zed Board

xc7z020clg4842

HLS,

MATLAB
Image Speed

Max frequency: 302MHz for YCbCr to

RGB Max frequency: 260MHz for

RGB to YCbCr

[40] 2020
Television image

quality control

Xilinx Zynq-

7000
HLS Image Speed

control of video signals at SD-SDI
(576i) &

HD-SDI (1080i) interfaces

[41] 2012
Mobile Game

Pipeline

XUPV5-X110T

ML505
Verilog 2D Speed

Pixels rate 90 M/S when system clock

was 100 MHz

[42] 2013
Sobel Edge

detection
Zed Board HLS Image Speed

Performance ranged: 10.9 fps to 388

fps.

[43] 2016
BM3D

algorithm
Intel’s Arria-10

GX1150
OpenCL

HLS
Image

Speed
Power

1.2× performance boost and an

outstanding 8.3× reduction in energy
dissipation

[44] 2017
K-Nearest

Neighbor
Virtex-7 690t HLS General

Speed

Power

The result showed that FPGA is better

than GPU for implementation time and

energy calculation.

[45] 2017 WPT
Nvidia GTX

1080 GPU
CUDA General Speed

simulation results agree with

experimental results. largest difference

between them was 3 and 8%

[46] 2016
pose

estimation
Zed oared HLS 3D

Speed

power

speedup of 1.6, manual tracking of 17

fps, and power is reduced.

[47] 2022

heterogeneous

 multilevel

parallel
distributing

algorithm

NVIDIA, AMD,
Intel GPUs

OpenCL General Speed

Parallel performance on super-

computers using up to 10,000 cores and
multiple GPUs with comparable general

performance

15

YES

NO

Complete?

Software Platform

Complete?

Purpose

Complete?

Zynq 30%

Area 17% Speed 74% Power 9%

HLS tool 37%

End

Start

40 Related Works

Graphics Algorithm

Complete?

Hardware Platform

Bresenham Algorithm 9%

Figure 7: The System Flowchart

NO

NO

NO

YES

YES

YES

Flowchart of the System

