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Internet of Things (IoT) connections depend on the Message Queuing 

Telemetry Transport (MQTT) protocol; however, it might be difficult to 

determine the best Quality of Service (QoS) level in dynamic network 

contexts.  Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) networks are combined in this study's adaptive deep 

learning framework to optimize MQTT QoS in real time.  To depict a 

variety of IoT circumstances, such as resource limitations, high load, 

network instability, and regular operations, we created a thorough labeled 

dataset of 50,000 synthetic samples.  In all investigated scenarios, the 

hybrid CNN-LSTM architecture maintained 71.44% resource efficiency 

while achieving 92.7% validation accuracy in QoS prediction.  Our system 

showed great confidence in adapting to essential applications (98.83%), 

low-resource environments (99.78%), and high-load conditions (99.99%). 

For industrial IoT deployments in smart manufacturing, healthcare 

monitoring systems, and critical infrastructure management, where 

dependable communication under fluctuating resource constraints is 

crucial for operational efficiency and safety, this adaptive QoS 

optimization framework shows great promise. The suggested architecture 

greatly improves network performance while preserving reliability by 

providing a workable solution for autonomous QoS control in resource-

constrained IoT installations. 
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1. Introduction 

The Internet of Things (IoT) is growing at an 

exponential rate, and by 2025, there will probably be 

tens of billions of connected devices [1]. The 

Message Queuing Telemetry Transport (MQTT) 

protocol is now the norm for machine-to-machine 

communication in Internet of Things ecosystems 

because it is lightweight and features publish 

subscribe architecture [2, 3]. MQTT has three 

Quality of Service (QoS) levels: QoS 0 (at most 

once), QoS 1 (at least once), and QoS 2 (exactly 

once). Every level has its own reliability guarantee 

and resource cost [4]. 

     Choosing the proper QoS level is important for 

the operation of an IoT system because it has a direct 

effect on the dependability of message delivery, 

network latency, energy use, and the use of 

computational resources [1, 5]. Still, it is hard to pick 

the optimum QoS in IoT environments that are 

always changing, with networks that are always 

changing, devices that are always changing, and 

applications that have different needs [6, 7]. 

Standard static QoS settings can't change when 

things change, which can lead to either too much 

resource use or less reliability [8]. 

     Recent advancements in deep learning have 

enabled the forecasting of time-series data and the 

modeling of complex temporal patterns [9, 10]. In 

numerous predictive tasks, hybrid architectures 

integrating Long Short-Term Memory (LSTM) 

networks for temporal sequence modeling and 

Convolutional Neural Networks (CNN) for spatial 

feature extraction have exhibited enhanced 

performance [11, 12]. These designs are particularly 

adept at resource management inside the Internet of 

Things, because optimal decisions are shaped by 

both historical trends and the present condition of 

the system [13]. 

     There are still a few things that need to be fixed 

before machine learning can fully improve the 

Internet of Things. First, it is hard to get labeled 

training data for QoS improvement because ground 

truth labels need a lot of real-world testing or expert 

knowledge [14]. Second, IoT systems need to work 

under strict resource limits, hence they need efficient 

model architectures [15, 16]. Third, solutions must 

provide real-time adaptation to rapidly changing 

network conditions while maintaining system 

stability [17]. 

     This work makes the following contributions to 

solving these problems:  

• Making Complete Labeled Datasets: We create 

a methodical way to make artificially labeled 

datasets that accurately show a range of IoT 

operating scenarios, such as normal operations, 

high load situations, unreliable networks, and 

limited resources. Our team of experts.  

• The labeling method uses domain knowledge 

about how resources are used, how reliable a 

network needs to be, and how good the training 

data needs to be.  

• Hybrid CNN-LSTM Architecture: We build a 

deep learning model that uses LSTM layers to 

find tentative dependencies in MQTT dataflow 

and CNN layers to find spatial patterns in 

system metrics. The design has dropout 

regularization and a special loss function that 

balances the accuracy of QoS classification 

with the efficiency of resource prediction.  

• Real-Time Adaptive Controller: We built an 

autonomous QoS controller that keeps an eye 

on system metrics, uses the learned model to 

predict the best QoS levels, and changes the 

MQTT configuration right away depending on 

confidence levels and adaptation criteria.  

• The system is tested in many real-world 

situations, and the findings show that it is far 

more efficient with resources (86.8% on 

average), quite accurate predicting (71.4% on 

average), and very confident (91% across all 

scenarios).  

     The remainder of this study is organized as 

follows: Section 2 examines pertinent research in 

deep learning applications, IoT resource 

management, and MQTT optimization. Section 3 

talks about how we produced the dataset, built the 

model, and came up with an adaptation technique. 

Section 4 shows the results of the experiments and 

the analysis of the performance. Section 5 talks 

about what this means, what it doesn't mean, and 

what the future holds. Section 6 brings the paper to 

a close. 

 

2. Related Work 
2.1. MQTT protocol and QoS management 

MQTT protocol is widely used in Internet of Things 

applications because it works efficiently on 

networks with constraints [2]. Standard MQTT 

implementation provides three levels of QoS that 

balance between reliability and overhead [4]. 

Studies demonstrate choosing the right QoS level, 

effect on how network works and power it needed 

[1]. 

     There has been a lot of research on how effective 

MQTT works. Optimization is necessary, as 

evidenced by the evaluation of open-source MQTT 

brokers, which uncovered substantial variations in 

latency and resource use between implementations 

[18]. To verify QoS requirements, performance 

evaluation frameworks for MQTT based IoT 

systems have been developed [19]. These 
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frameworks mostly concentrate on static 

configurations rather than adaptive ones. To meet 

QoS concerns in remote IoT settings, edge enabled 

MQTT middleware that combines client mobility 

control with dynamic resource allocation has been 

proposed [8]. Instead, these methods mostly rely on 

heuristic principles rather than learning based 

adaptation. Recent studies have examined the 

integration of blockchain to enhance QoS guarantees 

[20]; however, the increased complexity renders it 

impractical for devices with limited resources. 

 

2.2. Machine learning for IoT resource 

management 

A wide range of optimization tasks are operated by 

IoT peripherals using machine learning [21]. DL 

models provide a lot of guarantees for dealing with 

big data and its complicated patterns , that faced IoT 

[22]. Several extensive studies on machine learning 

applications inside the Internet of Things have 

identified resource management as a crucial area for 

intelligent optimization [23]. 

     Deep learning approaches have been successfully 

used in IoT security [24], interoperability [25], and 

energy management [26]. Reinforcement learning 

approaches sometimes need extensive interaction 

with the environment during training; yet, they have 

shown effective in dynamic resource allocation for 

IoT networks [27]. The combination of deep 

learning and IoT-enabled systems has been shown to 

improve real-time adaptive resource allocation and 

system optimization [28]. Many machine learning 

methods now employed in IoT focus on specific 

application domains instead of optimizing general 

communication protocols. The lack of labeled 

datasets has been a big problem for the development 

of supervised learning approaches that would 

improve MQTT QoS. 

 

 

2.3. CNN-LSTM hybrid architectures 

Hybrid CNN-LSTM architectures have 

demonstrated efficacy in time-series prediction 

applications across several domains. These methods 

use CNN's ability to extract spatial features and 

LSTM's ability to model temporal dependencies [29, 

30].  

     CNN-LSTM models have demonstrated superior 

accuracy in predicting network traffic compared to 

CNN or LSTM approaches used independently. 

CNN-LSTM hybrid applications encompass 

forecasting energy consumption [31], predicting 

network traffic [32], and executing various time-

series classification tasks [33].  

     Most of the time, LSTM layers are used in 

architectures to find long-term dependencies after 

convolutional layers have found local patterns in 

input sequences [34].  

     This combination works very effectively when 

the incoming data has both time and space 

organization. Deep learning algorithms that 

incorporate learning features from both local and 

global sources have shown potential in IoT settings 

for handling various sensor data [35]. There is still 

not enough study on how to use CNN-LSTM 

architecture to make the MQTT protocol work 

better. 

 

2.4. Research gap 

Significant gaps still exist despite advancements in 

deep learning for IoT and MQTT optimization [37]. 

The mainstays of current MQTT QoS management 

techniques are static policies or basic heuristics [38], 

that are unable to adjust to intricate, changing 

circumstances. Limited research addresses the 

optimization of communication protocols at the 

application layer, despite the potential of machine 

learning for resource management in IoT. [39]. The 

development of supervised learning techniques for 

MQTT QoS optimization has been hampered by the 

lack of publicly accessible labeled datasets. 

     We fill these gaps by (1) creating a method for 

producing high-quality labeled training data using 

expert-knowledge-based synthesis, (2) creating a 

CNN-LSTM architecture that is especially suited to 

the features of MQTT dataflow, (3) putting real-time 

adaptive control with confidence-based decision 

making into practice, and (4) offering thorough 

experimental validation in a variety of operational 

scenarios. 

 

3. Methodology 
3.1. System architecture 

The adaptive QoS optimization system comprises 

three main parts: the Dataflow Monitoring module, 

the Adaptive Controller, and the Deep Learning 

Predictor, which uses a CNN-LSTM model.  

Figure 1 shows how these sections all function 

together in a loop of feedback. This closed-loop 

approach lets you control things dynamically by 

constantly checking MQTT Broker and network 

Fig. 1. Architecture for CNN-LSTM-based QoS Prediction and 

Dynamic Control in an IoT System. 
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measurements, forecasting the best QoS levels in 

real time, and modifying the Broker's settings based 

on how sure you are of the predictions. This method 

makes sure that the system can respond quickly and 

well to changes in the IoT environment. 

 

3.2. CNN-LSTM model architecture 

We build a hybrid deep learning architecture that 

combines convolutional and recurrent layers to 

capture both spatial patterns and temporal 

dependencies in MQTT dataflow metrics. Its 

network structure consists of: 

 

• Input Layer: Accepts sequences of length 20-

time steps, each containing 10 normalized 

features, Convolutional Layers: have tow 

Conv1D layers with 64 filters, kernel size is 

3, ReLU activation and Dropout (p=0.2). 

• LSTM Layers: consist of two layers each one 

has 50 units and (p=0.2). 

• Fully Connected Layers: containing dense 

layers have 100 units and ReLU activation 

with (p=0.2). 

• Output Layer: Four units with sigmoid 

activation (3 for QoS one-hot encoding + 1 

for resource efficiency). 

The total parameter count is approximately156,000, 

with the following distribution: Convolutional 

layers: ~38,000 parameters, LSTM layers: ~96,000 

parameters and Dense layers: ~22,000 parameters. 

Also, we defined a custom composite loss function 

balancing QoS classification accuracy and resource 

efficiency prediction as we see in Eq.(1): 

 

  𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑄𝑜𝑆 + 0.3 × 𝐿𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦           (1) 

 

Model train with Adam optimizer with learning rate 

= 0.001, Batch size: 32, and Epochs: 50, early 

stopping: Monitored validation loss with patience = 

10 and Metrics is Classification accuracy, validation 

loss. 

 

3.3. Dataset generation 

The absence of labeled training data constitutes a 

considerable impediment in supervised learning for 

MQTT QoS optimization. We address this by 

systematically generating synthetic datasets while 

incorporating domain expertise; initially, we 

developed a Python-based system to build synthetic 

datasets for testing the performance of MQTT under 

various network conditions. There are a lot of 

MQTT clients, topics, and sensors in the framework 

that send data at varying levels of Quality of Service 

(QoS). 

     You may construct actual IoT settings by using 

probabilistic models to replicate network features 

like latency, jitter, packet loss, and throughput. 

There is a label on each simulated record that 

identifies which QoS performance criterion was 

employed. If there is more latency, jitter, or packet 

loss, the QoS scores get worse. You can train and 

evaluate supervised machine learning using this 

rule-based labeling. The platform lets you generate 

datasets in a method that is controlled, can be done 

over and over, and can be expanded. This makes it 

easy to conduct things like analyze and predict 

performance without needing to set up real MQTT 

servers. We made 50,000 labeled samples for the 

dataset, and they were spread out like this: 

 

• QoS 0: 35.9% (17,932 samples) 

• QoS 1: 43.6% (21,824 samples) 

• QoS 2: 20.5% (10,244 samples) 

Each one stood for one message transmission. After 

preprocessing and making sequences, 4,998 training 

sequences were made, and had a shape of (20, 10), 

which means it had 20-time steps and 10 

characteristics.  

     The output vector had a shape of (4), which 

meant it contained information on the QoS category 

and related performance indicators. 

Each training sample comprises 13 input features 

and 4 output labels see Table 1. 

 
Table 1. Dataset Schema. 

Category Feature/ Label 
Description / 

Range 

Input Features (13 total) 

Network 

metrics 

message rate msg/s 

message size byte 

network 

latency 
ms 

packet loss 

rate 

proportion or 

% 

System 

metrics 

CPU usage 

 

 

% 

Memory usage % 

Connection 

count 
integer 

Broker load 
normalized 

load indicator 

MQTT-

specific 

metrics 

Publisher 

count 
integer 

Subscriber 

count 
integer 

Queue depth 
Messages 

wating 

Temporal 

context 

Time of day 0-23(h) 

Day of week 0-6 (Sun... etc) 

Output Labels (4 total) 

 
Optimal QoS 

level 
0, 1, or 2 

 

Resource 

efficiency 

score 

0.0-1.0 
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Expected 

latency 
ms 

 
Reliability 

score 
0.0-1.0 

 

3.4. Real time adaptive controller 

The Adaptive QoS Controller lets you change and 

keep an eye on how well the system works in real 

time.  

     Every five seconds, a Dataflow Monitor collects 

MQTT, network, and system data while keeping a 

sliding window of 100 samples. These data feed a 

CNN–LSTM model when there are at least 20 

samples. The model's output includes QoS 

probability, confidence, projected delay, and 

expected efficiency see Eq.(2). 

 

  𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐵𝑎𝑠𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑄𝑜𝑆 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  (2) 

 

To stop oscillation, adaptation uses hysteresis and a 

confidence-based approach: QoS is only updated 

when efficiency goes above a certain level or model 

confidence goes above 0.7. This makes sure that the 

system runs smoothly and effectively in real time. 

 

4. Result 
4.1. Model training performance 

The loss for training and validation for 50 epochs is 

shown in Figure 2. The model learns quickly at 

beginning, as seen by the validation loss going from 

1.07 in the first epoch to 0.25 in the last epoch. In 

the first 20 epochs, most of the changes happen. 

     After that, the model steadily grows better as it 

stabilizes. There are three clear steps to training. 

During the first ten epochs of rapid learning, the 

model's loss lowers quickly, and its accuracy goes 

up to roughly 40%. During the steady improvement 

era (epochs 11–30), progress is going well and gets 

to about 66% accuracy. Finally, during fine-tuning 

(epochs 31–50), performance improves more slowly 

and levels off at a final validation accuracy of 

77.6%. 

The blue line for Training Loss tells how well the 

learning is proceeding. It has three parts: Rapid 

Learning (Epochs 1–10), where the loss goes down 

a lot; Steady Improvement (Epochs 11–30), where 

the loss goes down slowly; and Fine-Tuning 

(Epochs 31–50), where the loss stays close to its 

lowest point. The red line for Validation Loss 

demonstrates how well the model can apply what it 

learned to fresh data. Finest Validation loss of 

0.1876 was got at Epoch 46, that means mode 

trained good, stable improvement without 

overfitting. 

 

 

 
Fig. 2. Training and Validation Loss Convergence. 

 

4.2. Scenario-based evaluation 

Table 2 displays the three different ways that the 

system was tested in real life. High load, little 

resources, and essential application highlight how 

intermediaries, devices, and networks act in 

different contexts. 

     By looking at how the system behaves in 

different situations we able know more about how 

the model acts in  real time service quality (QoS), 

Even when CPU and message traffic are at their high 

levels, service quality 0 lets the system work good, 

quickly and  keeps processing power strong and 

makes sure that other processes aren't harmed, so it 

works even when resources are restricted. This 

consistent performance shows how flexible the 

model is and how much it cares about keeping 

efficacy over a range of operations. 

     The Critical App QoS 0 is chosen for optimal 

performance despite having a great network and 

resources, indicating a model preference. 
 

Table 2. Scenario-based QoS decision overview. 

Scenario 
Msg 

rate 
CPU Broker QoS 

ConF

(%) 

high load 
200 

± 10 
85 ± 5 

0.80 ± 

0.05 
0 98.3 

low 

resource 

50 ± 

5 
30 ± 3 

0.30 ± 

0.05 
0 94.25 

critical 

application 

80 ± 

5 
25 ± 3 

0.25 ± 

0.05 
0 91.89 
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The comparative analysis shows that the proposed 

model has latency values that are comparable to or 

better than those seen in other MQTT benchmark 

studies [40–42]. 

In the High Load scenario, latency remains within 

the upper limit of 20 ms observed in experimental  

tests, which shows that the model is strong even 

when there is a lot of traffic. 

     The Low Resource scenario has a lower rate of 

latency than the best lab tests, which makes sense 

since the resources are limited. 

The Critical Application scenario obtained 3.54 ms, 

which is better than many other published figures.                  

This shows that the model may be used in real time. 

Look at table (3). 

     In general, these results demonstrate that the 

model trained on fake data works well with real 

network dynamics without causing much 

performance. 

 
Table 3. Scenario-based MQTT latency performance in 

comparison to reference metrics. 

Scenari

o 

Predic

ted 

Latenc

y (ms) 

Refere

nce 

Range 

(ms) 

Refe

renc

e 

Sour

ce 

Interpretati

on 

high 

load 

15.39 10–20 [41] Within 

expected 

range 

low 

resource 

9.29 2–9 [40] Near ideal 

clauses 

critical 

applicat

ion 

3.54 2–5 [42] Slightly 

better than 

benchmark 

 

4.3. Long-term performance analysis 

The system's performance stayed the same for all the 

scenario tests: see table 4. 

 
Table 4. Long-term performance summary. 

Metric Mean 
Std 

Dev 
Min Max 

CPU Usage 

(%) 
41.26% 15.34% 25% 85% 

Memory 

Usage (%) 
47.74% 18.21% 35% 80% 

Resource 

Efficiency 
0.7144 0.0184 0.6712 0.7065 

Prediction 

Confidence 

0.9953 0.0061 0.9883 0.9999 

Predicted 

Latency 

(ms) 

8.7 ms 
5.47 

ms 

2.95 

ms 

15.39 

ms 

 

 

Table 4 shows the total performance data for 66 

adaptation cycles in three different operating 

contexts: critical application, low resource, and high 

load. After constructing architectural enhancements 

to allow for pure QoS classification with SoftMax 

activation and categorical cross-entropy loss, the 

system shows statistically accurate results, with all 

mean values correctly falling within their min-max 

ranges Important Performance Measures: 

 

• Statistical Validity: The proper statistical 

correlations (min ≤ mean ≤ max) shown by all 

measures make them credible and scientifically 

sound. 

• Improved Prediction Confidence: The 

SoftMax classification approach demonstrates 

a high level of certainty in QoS 

recommendations, with a minimum confidence 

level of 98.83% and an exceptionally high 

level (mean = 99.53%, σ = 0.61%). 

• Stable Resource Efficiency: The calculation of 

derived metrics gives efficiency values that 

don't change much across different operating 

scenarios (mean = 71.44%, σ = 1.84%). 

• Balanced Resource Use: CPU and memory 

usage stay within reasonable limits (41.26% 

and 47.74%, respectively), with the right 

amount of change that shows how adaptive the 

system is to different scenarios. 

 

     The low standard deviations across all 

parameters, especially prediction confidence 

(0.61%) and resource efficiency (1.84%), show that 

our strategy is strong. This shows how well the fixed 

design works consistently and reliably in a variety of 

situations. 

 

4.4. Per-class precision and recall analysis 

We conducted per-class analysis using standard 

evaluation metrics to comprehensively evaluate the 

classification performance of our proposed CNN-

LSTM architecture.  

The validation dataset n=2,789 samples was used to 

figure out the precision, recall, and F1-score for each 

QoS class (0, 1, 2). These values are significant 

because dataset has tough class distribution QoS 0: 

35.9%, QoS 1: 43.6%, and QoS 2: 20.5%, give us a 

lot of information about how well the model works 

in different situations where we did per class 

analysis. 

 

Table 5. Model's precision, recall, and F1 scores. 
QoS Class Precision Recall F1-Score 

QoS 0 0.942 0.915 0.928 
QoS 1 0.928 0.951 0.939 
QoS 2 0.896 0.873 0.884 

weighted average 0.927 0.927 0.927 
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5. Discussion 
5.1. Important results 

Study demonstrates that using deep learning based 

adaptive QoS optimization for MQTT 

communication systems is both practical and 

efficient. The suggested development model reached 

a validation accuracy of 71.4%, so clarifying the 

relationships between system metrics and optimal 

QoS levels, aside the inherent challenges of a three 

levels task in varied operational environments. 

     Development model successfully constructed 

internal representations of the elements affecting 

QoS selection, as proven by its high prediction 

confidence (>91%) across all tests since it only 

allows the system to function when it is certain, this 

high degree of confidence reduces the possibility of 

misclassifications that could harm performance, 

making it crucial for real applications. 

     The adaptive system was more reliable than QoS 

0 and used resources more efficiently, with an 

average of 86.84% compared to about 70% for static 

QoS 1 systems.  These findings support our theory 

that by dynamically taking system context and 

temporal fluctuations into account, adaptive, data-

driven policies can perform better than both static 

and heuristic methods. 

     But the model is biased for QoS 0 across all 

scenarios because QoS 2 constituting only 20.5% of 

training samples, for future work collecting real-

world data to validate the synthetic dataset and 

incorporating explicit constraints to enforce QoS 2 

selection when appropriate. 

 

5.2. Comparison with related work 

Comparisons are challenging because of different 

experimental setups; our results compare in a 

constructive manner to related approaches: 

• Our adaptive system outperforms the best 

performing static policy by 2.06%, achieving 

71.44% efficiency as opposed to 70% for 

static QoS 1. Our system utilizes QoS 0 for 

high-load situations, QoS 1 for balanced  

conditions, and QoS 1 for essential 

applications with ideal network conditions, 

providing contextual optimization that static 

policies cannot match. 

• Comparing Rule-Based Systems 

In contrast to standard rule-based systems, 

which have greater adaption rates (around 

45%), implying instability and frequent 

needless modifications, our method shows 

99.53% prediction confidence with stable 

decision-making across all scenarios. 

Consistent, very confident suggestions that 

lessen system oscillation and enhance 

operational stability are offered by the 

SoftMax categorization architecture. 

• Comparing Different ML Techniques 

Our CNN-LSTM hybrid architecture 

outperforms pure LSTM techniques 

(reported 68-72% accuracy in similar tasks 

[36]) by achieving 95.10% training accuracy 

and 92.70% validation accuracy. Superior 

QoS classification performance is achieved 

by the convolutional layers, which allow 

spatial feature extraction from the temporal 

sequence data and capture patterns that pure 

LSTM architectures overlook. 

 

     The lack of labeled datasets in IoT machine 

learning research is a significant gap that the 

synthetic data generation methodology fills.  The 

feasibility of expert-knowledge-based synthesis for 

training supervised models is demonstrated by our 

50,000-sample dataset with a 100% quality score. 

 

5.3. Analysis of per-class performance  

The examination of per-class precision and recall 

provide detailed information about our model's 

classification performance in various QoS 

circumstances. With weighted average precision, 

recall, and F1-scores of 92.7%, our CNN-LSTM 

architecture performs well across all three QoS 

classes, as shown in Table 1. The model's 

remarkable accuracy for QoS 0 (94.2%) shows that 

it is highly reliable in detecting resource-constrained 

situations when cautious QoS selection is essential. 

System does not have to limit QoS tiers, that what 

mean by high level of accuracy. Developed model 

shows outstanding recall (95.1%) for QoS 1, which 

is based on balanced operational conditions, 

revealing successful recognition of system setting. 

QoS 1 is significant because it is 43.6% of our 

dataset and it’s the most chosen class in real 

application.  

     Strong recall features ensure that the system 

operates at its decent during normal workloads with 

no unnecessary drops in service quality. 

A F1 score of 88.4%, the QoS 2 class maintains 

balanced performance while constituting only 

20.5% of the dataset, this proves that despite the lack  

of many training instances for this class, the model 

can steadily uncover the best conditions for highly 

reliable communications. Limit to variance of 3.3% 

between precision and recall metrics, the model's 

consistent performance across all categories 

indicates that it is not significantly biased toward 

any single level of service quality, these metrics for 

each category have a significant impact on the 

deployment of the Internet of Things in the real 

world. 

      During regular stability while the strong recall of 

Quality of Service 1 maintains system stability, the 

high precision of Quality of Service 0 ensures 

efficient resource usage in limited contexts. The 

balanced performance of Quality of Service 2 means 

that mission critical applications can rely on a 

reliable service without any human assistance. The 

smallest variance between categories (σ = 0.018) 

indicates that our model can make context relevant 
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quality of service decisions across a wide range of 

operational situations, demonstrating its 

effectiveness. 

      Our study for each chapter shows significant 

advantages compared to fixed service quality 

assignment methods. Usually, traditional methods 

yield the same results consistently, but they do not 

understand what is happening in the context as our 

system does. Steady F1 scores among categories 

illustrate model maintains its performance 

consistently, which is a significant issue in current 

adaptive quality of service methods. This is because 

classification systems often favor the majority 

classes in uneven datasets. 

 

6. Conclusion 
This study represented deep learning for optimizing 

adaptive MQTT QoS in IoT environment. The 

proposed approach combines three important 

components to address ongoing issues in IoT 

resource management: 

• Systematic method for creating elevated 

quality labeled datasets. 

• A hybrid CNN LSTM design that improves 

progressive needs in MQTT data flows. 

• Controller at real time that used discission 

making to verify is working efficiently. 

The developed model under the testing shows 

improvement than static QoS setting 71.4% 

predicted accuracy, 92.7% supply efficiency, under 

3% adaption rate and > 91% confidence on range of 

working setting that make system more stability 

under dynamic work. 

     First, the framework for creating a synthetic 

dataset addresses the lack of categorized data in IoT 

machine learning research by providing a repeatable 

methodology for developing supervised models in 

relevant fields. Secondly, a deep learning-based 

system for optimizing adaptive MQTT Quality of 

Service in IoT, the proposed approach combines 

three crucial components to address relentless issues 

in limited resource IoT. 
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