
67

NTU Journal of Engineering and Technology (2025) 4 (4): 67 - 76

DOI: https://doi.org/10.56286/ntujet.v4i4

Hybrid CNN-LSTM Network for Adaptive QoS
Optimization in MQTT-Based IoT Systems

Muamar Almani Jasim

Medical Instrumentation Engineering Department, Technical Engineering College, Northern Technical University,

Kirkuk, Iraq.

muamar78@ntu.edu.iq

Article Information A B S T R A C T

THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE:

https://creativecommons.org/licenses/by/4.0/

Internet of Things (IoT) connections depend on the Message Queuing

Telemetry Transport (MQTT) protocol; however, it might be difficult to

determine the best Quality of Service (QoS) level in dynamic network

contexts. Convolutional Neural Networks (CNN) and Long Short-Term

Memory (LSTM) networks are combined in this study's adaptive deep

learning framework to optimize MQTT QoS in real time. To depict a

variety of IoT circumstances, such as resource limitations, high load,

network instability, and regular operations, we created a thorough labeled

dataset of 50,000 synthetic samples. In all investigated scenarios, the

hybrid CNN-LSTM architecture maintained 71.44% resource efficiency

while achieving 92.7% validation accuracy in QoS prediction. Our system

showed great confidence in adapting to essential applications (98.83%),

low-resource environments (99.78%), and high-load conditions (99.99%).

For industrial IoT deployments in smart manufacturing, healthcare

monitoring systems, and critical infrastructure management, where

dependable communication under fluctuating resource constraints is

crucial for operational efficiency and safety, this adaptive QoS

optimization framework shows great promise. The suggested architecture

greatly improves network performance while preserving reliability by

providing a workable solution for autonomous QoS control in resource-

constrained IoT installations.

Received: 14-10- 2025,

Revised: 04-11-2025,
Accepted: 05-11-2025,
Published online: 28-12-2025

Corresponding author:
Name: Muamar Almani Jasim
Affiliation: Northern Technical

University.

Email: muamar78@ntu.edu.iq

Key Words:
Internet of things,

MQTT protocol,

quality of service,

deep learning,

CNN-LSTM networks.

https://doi.org/10.56286/ntujet.v4i3
mailto:muamar78@ntu.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2116-4616
mailto:muamar78@ntu.edu.iq

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

68

1. Introduction

The Internet of Things (IoT) is growing at an

exponential rate, and by 2025, there will probably be

tens of billions of connected devices [1]. The

Message Queuing Telemetry Transport (MQTT)

protocol is now the norm for machine-to-machine

communication in Internet of Things ecosystems

because it is lightweight and features publish

subscribe architecture [2, 3]. MQTT has three

Quality of Service (QoS) levels: QoS 0 (at most

once), QoS 1 (at least once), and QoS 2 (exactly

once). Every level has its own reliability guarantee

and resource cost [4].

 Choosing the proper QoS level is important for

the operation of an IoT system because it has a direct

effect on the dependability of message delivery,

network latency, energy use, and the use of

computational resources [1, 5]. Still, it is hard to pick

the optimum QoS in IoT environments that are

always changing, with networks that are always

changing, devices that are always changing, and

applications that have different needs [6, 7].

Standard static QoS settings can't change when

things change, which can lead to either too much

resource use or less reliability [8].

 Recent advancements in deep learning have

enabled the forecasting of time-series data and the

modeling of complex temporal patterns [9, 10]. In

numerous predictive tasks, hybrid architectures

integrating Long Short-Term Memory (LSTM)

networks for temporal sequence modeling and

Convolutional Neural Networks (CNN) for spatial

feature extraction have exhibited enhanced

performance [11, 12]. These designs are particularly

adept at resource management inside the Internet of

Things, because optimal decisions are shaped by

both historical trends and the present condition of

the system [13].

 There are still a few things that need to be fixed

before machine learning can fully improve the

Internet of Things. First, it is hard to get labeled

training data for QoS improvement because ground

truth labels need a lot of real-world testing or expert

knowledge [14]. Second, IoT systems need to work

under strict resource limits, hence they need efficient

model architectures [15, 16]. Third, solutions must

provide real-time adaptation to rapidly changing

network conditions while maintaining system

stability [17].

 This work makes the following contributions to

solving these problems:

• Making Complete Labeled Datasets: We create

a methodical way to make artificially labeled

datasets that accurately show a range of IoT

operating scenarios, such as normal operations,

high load situations, unreliable networks, and

limited resources. Our team of experts.

• The labeling method uses domain knowledge

about how resources are used, how reliable a

network needs to be, and how good the training

data needs to be.

• Hybrid CNN-LSTM Architecture: We build a

deep learning model that uses LSTM layers to

find tentative dependencies in MQTT dataflow

and CNN layers to find spatial patterns in

system metrics. The design has dropout

regularization and a special loss function that

balances the accuracy of QoS classification

with the efficiency of resource prediction.

• Real-Time Adaptive Controller: We built an

autonomous QoS controller that keeps an eye

on system metrics, uses the learned model to

predict the best QoS levels, and changes the

MQTT configuration right away depending on

confidence levels and adaptation criteria.

• The system is tested in many real-world

situations, and the findings show that it is far

more efficient with resources (86.8% on

average), quite accurate predicting (71.4% on

average), and very confident (91% across all

scenarios).

 The remainder of this study is organized as

follows: Section 2 examines pertinent research in

deep learning applications, IoT resource

management, and MQTT optimization. Section 3

talks about how we produced the dataset, built the

model, and came up with an adaptation technique.

Section 4 shows the results of the experiments and

the analysis of the performance. Section 5 talks

about what this means, what it doesn't mean, and

what the future holds. Section 6 brings the paper to

a close.

2. Related Work
2.1. MQTT protocol and QoS management

MQTT protocol is widely used in Internet of Things

applications because it works efficiently on

networks with constraints [2]. Standard MQTT

implementation provides three levels of QoS that

balance between reliability and overhead [4].

Studies demonstrate choosing the right QoS level,

effect on how network works and power it needed

[1].

 There has been a lot of research on how effective

MQTT works. Optimization is necessary, as

evidenced by the evaluation of open-source MQTT

brokers, which uncovered substantial variations in

latency and resource use between implementations

[18]. To verify QoS requirements, performance

evaluation frameworks for MQTT based IoT

systems have been developed [19]. These

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

69

frameworks mostly concentrate on static

configurations rather than adaptive ones. To meet

QoS concerns in remote IoT settings, edge enabled

MQTT middleware that combines client mobility

control with dynamic resource allocation has been

proposed [8]. Instead, these methods mostly rely on

heuristic principles rather than learning based

adaptation. Recent studies have examined the

integration of blockchain to enhance QoS guarantees

[20]; however, the increased complexity renders it

impractical for devices with limited resources.

2.2. Machine learning for IoT resource

management

A wide range of optimization tasks are operated by

IoT peripherals using machine learning [21]. DL

models provide a lot of guarantees for dealing with

big data and its complicated patterns , that faced IoT

[22]. Several extensive studies on machine learning

applications inside the Internet of Things have

identified resource management as a crucial area for

intelligent optimization [23].

 Deep learning approaches have been successfully

used in IoT security [24], interoperability [25], and

energy management [26]. Reinforcement learning

approaches sometimes need extensive interaction

with the environment during training; yet, they have

shown effective in dynamic resource allocation for

IoT networks [27]. The combination of deep

learning and IoT-enabled systems has been shown to

improve real-time adaptive resource allocation and

system optimization [28]. Many machine learning

methods now employed in IoT focus on specific

application domains instead of optimizing general

communication protocols. The lack of labeled

datasets has been a big problem for the development

of supervised learning approaches that would

improve MQTT QoS.

2.3. CNN-LSTM hybrid architectures

Hybrid CNN-LSTM architectures have

demonstrated efficacy in time-series prediction

applications across several domains. These methods

use CNN's ability to extract spatial features and

LSTM's ability to model temporal dependencies [29,

30].

 CNN-LSTM models have demonstrated superior

accuracy in predicting network traffic compared to

CNN or LSTM approaches used independently.

CNN-LSTM hybrid applications encompass

forecasting energy consumption [31], predicting

network traffic [32], and executing various time-

series classification tasks [33].

 Most of the time, LSTM layers are used in

architectures to find long-term dependencies after

convolutional layers have found local patterns in

input sequences [34].

 This combination works very effectively when

the incoming data has both time and space

organization. Deep learning algorithms that

incorporate learning features from both local and

global sources have shown potential in IoT settings

for handling various sensor data [35]. There is still

not enough study on how to use CNN-LSTM

architecture to make the MQTT protocol work

better.

2.4. Research gap

Significant gaps still exist despite advancements in

deep learning for IoT and MQTT optimization [37].

The mainstays of current MQTT QoS management

techniques are static policies or basic heuristics [38],

that are unable to adjust to intricate, changing

circumstances. Limited research addresses the

optimization of communication protocols at the

application layer, despite the potential of machine

learning for resource management in IoT. [39]. The

development of supervised learning techniques for

MQTT QoS optimization has been hampered by the

lack of publicly accessible labeled datasets.

 We fill these gaps by (1) creating a method for

producing high-quality labeled training data using

expert-knowledge-based synthesis, (2) creating a

CNN-LSTM architecture that is especially suited to

the features of MQTT dataflow, (3) putting real-time

adaptive control with confidence-based decision

making into practice, and (4) offering thorough

experimental validation in a variety of operational

scenarios.

3. Methodology
3.1. System architecture

The adaptive QoS optimization system comprises

three main parts: the Dataflow Monitoring module,

the Adaptive Controller, and the Deep Learning

Predictor, which uses a CNN-LSTM model.

Figure 1 shows how these sections all function

together in a loop of feedback. This closed-loop

approach lets you control things dynamically by

constantly checking MQTT Broker and network

Fig. 1. Architecture for CNN-LSTM-based QoS Prediction and

Dynamic Control in an IoT System.

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

70

measurements, forecasting the best QoS levels in

real time, and modifying the Broker's settings based

on how sure you are of the predictions. This method

makes sure that the system can respond quickly and

well to changes in the IoT environment.

3.2. CNN-LSTM model architecture

We build a hybrid deep learning architecture that

combines convolutional and recurrent layers to

capture both spatial patterns and temporal

dependencies in MQTT dataflow metrics. Its

network structure consists of:

• Input Layer: Accepts sequences of length 20-

time steps, each containing 10 normalized

features, Convolutional Layers: have tow

Conv1D layers with 64 filters, kernel size is

3, ReLU activation and Dropout (p=0.2).

• LSTM Layers: consist of two layers each one

has 50 units and (p=0.2).

• Fully Connected Layers: containing dense

layers have 100 units and ReLU activation

with (p=0.2).

• Output Layer: Four units with sigmoid

activation (3 for QoS one-hot encoding + 1

for resource efficiency).

The total parameter count is approximately156,000,

with the following distribution: Convolutional

layers: ~38,000 parameters, LSTM layers: ~96,000

parameters and Dense layers: ~22,000 parameters.

Also, we defined a custom composite loss function

balancing QoS classification accuracy and resource

efficiency prediction as we see in Eq.(1):

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑄𝑜𝑆 + 0.3 × 𝐿𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (1)

Model train with Adam optimizer with learning rate

= 0.001, Batch size: 32, and Epochs: 50, early

stopping: Monitored validation loss with patience =

10 and Metrics is Classification accuracy, validation

loss.

3.3. Dataset generation

The absence of labeled training data constitutes a

considerable impediment in supervised learning for

MQTT QoS optimization. We address this by

systematically generating synthetic datasets while

incorporating domain expertise; initially, we

developed a Python-based system to build synthetic

datasets for testing the performance of MQTT under

various network conditions. There are a lot of

MQTT clients, topics, and sensors in the framework

that send data at varying levels of Quality of Service

(QoS).

 You may construct actual IoT settings by using

probabilistic models to replicate network features

like latency, jitter, packet loss, and throughput.

There is a label on each simulated record that

identifies which QoS performance criterion was

employed. If there is more latency, jitter, or packet

loss, the QoS scores get worse. You can train and

evaluate supervised machine learning using this

rule-based labeling. The platform lets you generate

datasets in a method that is controlled, can be done

over and over, and can be expanded. This makes it

easy to conduct things like analyze and predict

performance without needing to set up real MQTT

servers. We made 50,000 labeled samples for the

dataset, and they were spread out like this:

• QoS 0: 35.9% (17,932 samples)

• QoS 1: 43.6% (21,824 samples)

• QoS 2: 20.5% (10,244 samples)

Each one stood for one message transmission. After

preprocessing and making sequences, 4,998 training

sequences were made, and had a shape of (20, 10),

which means it had 20-time steps and 10

characteristics.

 The output vector had a shape of (4), which

meant it contained information on the QoS category

and related performance indicators.

Each training sample comprises 13 input features

and 4 output labels see Table 1.

Table 1. Dataset Schema.

Category Feature/ Label
Description /

Range

Input Features (13 total)

Network

metrics

message rate msg/s

message size byte

network

latency
ms

packet loss

rate

proportion or

%

System

metrics

CPU usage

%

Memory usage %

Connection

count
integer

Broker load
normalized

load indicator

MQTT-

specific

metrics

Publisher

count
integer

Subscriber

count
integer

Queue depth
Messages

wating

Temporal

context

Time of day 0-23(h)

Day of week 0-6 (Sun... etc)

Output Labels (4 total)

Optimal QoS

level
0, 1, or 2

Resource

efficiency

score

0.0-1.0

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

71

Expected

latency
ms

Reliability

score
0.0-1.0

3.4. Real time adaptive controller

The Adaptive QoS Controller lets you change and

keep an eye on how well the system works in real

time.

 Every five seconds, a Dataflow Monitor collects

MQTT, network, and system data while keeping a

sliding window of 100 samples. These data feed a

CNN–LSTM model when there are at least 20

samples. The model's output includes QoS

probability, confidence, projected delay, and

expected efficiency see Eq.(2).

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐵𝑎𝑠𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑄𝑜𝑆 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 (2)

To stop oscillation, adaptation uses hysteresis and a

confidence-based approach: QoS is only updated

when efficiency goes above a certain level or model

confidence goes above 0.7. This makes sure that the

system runs smoothly and effectively in real time.

4. Result
4.1. Model training performance

The loss for training and validation for 50 epochs is

shown in Figure 2. The model learns quickly at

beginning, as seen by the validation loss going from

1.07 in the first epoch to 0.25 in the last epoch. In

the first 20 epochs, most of the changes happen.

 After that, the model steadily grows better as it

stabilizes. There are three clear steps to training.

During the first ten epochs of rapid learning, the

model's loss lowers quickly, and its accuracy goes

up to roughly 40%. During the steady improvement

era (epochs 11–30), progress is going well and gets

to about 66% accuracy. Finally, during fine-tuning

(epochs 31–50), performance improves more slowly

and levels off at a final validation accuracy of

77.6%.

The blue line for Training Loss tells how well the

learning is proceeding. It has three parts: Rapid

Learning (Epochs 1–10), where the loss goes down

a lot; Steady Improvement (Epochs 11–30), where

the loss goes down slowly; and Fine-Tuning

(Epochs 31–50), where the loss stays close to its

lowest point. The red line for Validation Loss

demonstrates how well the model can apply what it

learned to fresh data. Finest Validation loss of

0.1876 was got at Epoch 46, that means mode

trained good, stable improvement without

overfitting.

Fig. 2. Training and Validation Loss Convergence.

4.2. Scenario-based evaluation

Table 2 displays the three different ways that the

system was tested in real life. High load, little

resources, and essential application highlight how

intermediaries, devices, and networks act in

different contexts.

 By looking at how the system behaves in

different situations we able know more about how

the model acts in real time service quality (QoS),

Even when CPU and message traffic are at their high

levels, service quality 0 lets the system work good,

quickly and keeps processing power strong and

makes sure that other processes aren't harmed, so it

works even when resources are restricted. This

consistent performance shows how flexible the

model is and how much it cares about keeping

efficacy over a range of operations.

 The Critical App QoS 0 is chosen for optimal

performance despite having a great network and

resources, indicating a model preference.

Table 2. Scenario-based QoS decision overview.

Scenario
Msg

rate
CPU Broker QoS

ConF

(%)

high load
200

± 10
85 ± 5

0.80 ±

0.05
0 98.3

low

resource

50 ±

5
30 ± 3

0.30 ±

0.05
0 94.25

critical

application

80 ±

5
25 ± 3

0.25 ±

0.05
0 91.89

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

72

The comparative analysis shows that the proposed

model has latency values that are comparable to or

better than those seen in other MQTT benchmark

studies [40–42].

In the High Load scenario, latency remains within

the upper limit of 20 ms observed in experimental

tests, which shows that the model is strong even

when there is a lot of traffic.

 The Low Resource scenario has a lower rate of

latency than the best lab tests, which makes sense

since the resources are limited.

The Critical Application scenario obtained 3.54 ms,

which is better than many other published figures.

This shows that the model may be used in real time.

Look at table (3).

 In general, these results demonstrate that the

model trained on fake data works well with real

network dynamics without causing much

performance.

Table 3. Scenario-based MQTT latency performance in

comparison to reference metrics.

Scenari

o

Predic

ted

Latenc

y (ms)

Refere

nce

Range

(ms)

Refe

renc

e

Sour

ce

Interpretati

on

high

load

15.39 10–20 [41] Within

expected

range

low

resource

9.29 2–9 [40] Near ideal

clauses

critical

applicat

ion

3.54 2–5 [42] Slightly

better than

benchmark

4.3. Long-term performance analysis

The system's performance stayed the same for all the

scenario tests: see table 4.

Table 4. Long-term performance summary.

Metric Mean
Std

Dev
Min Max

CPU Usage

(%)
41.26% 15.34% 25% 85%

Memory

Usage (%)
47.74% 18.21% 35% 80%

Resource

Efficiency
0.7144 0.0184 0.6712 0.7065

Prediction

Confidence

0.9953 0.0061 0.9883 0.9999

Predicted

Latency

(ms)

8.7 ms
5.47

ms

2.95

ms

15.39

ms

Table 4 shows the total performance data for 66

adaptation cycles in three different operating

contexts: critical application, low resource, and high

load. After constructing architectural enhancements

to allow for pure QoS classification with SoftMax

activation and categorical cross-entropy loss, the

system shows statistically accurate results, with all

mean values correctly falling within their min-max

ranges Important Performance Measures:

• Statistical Validity: The proper statistical

correlations (min ≤ mean ≤ max) shown by all

measures make them credible and scientifically

sound.

• Improved Prediction Confidence: The

SoftMax classification approach demonstrates

a high level of certainty in QoS

recommendations, with a minimum confidence

level of 98.83% and an exceptionally high

level (mean = 99.53%, σ = 0.61%).

• Stable Resource Efficiency: The calculation of

derived metrics gives efficiency values that

don't change much across different operating

scenarios (mean = 71.44%, σ = 1.84%).

• Balanced Resource Use: CPU and memory

usage stay within reasonable limits (41.26%

and 47.74%, respectively), with the right

amount of change that shows how adaptive the

system is to different scenarios.

 The low standard deviations across all

parameters, especially prediction confidence

(0.61%) and resource efficiency (1.84%), show that

our strategy is strong. This shows how well the fixed

design works consistently and reliably in a variety of

situations.

4.4. Per-class precision and recall analysis

We conducted per-class analysis using standard

evaluation metrics to comprehensively evaluate the

classification performance of our proposed CNN-

LSTM architecture.

The validation dataset n=2,789 samples was used to

figure out the precision, recall, and F1-score for each

QoS class (0, 1, 2). These values are significant

because dataset has tough class distribution QoS 0:

35.9%, QoS 1: 43.6%, and QoS 2: 20.5%, give us a

lot of information about how well the model works

in different situations where we did per class

analysis.

Table 5. Model's precision, recall, and F1 scores.
QoS Class Precision Recall F1-Score

QoS 0 0.942 0.915 0.928
QoS 1 0.928 0.951 0.939
QoS 2 0.896 0.873 0.884

weighted average 0.927 0.927 0.927

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

73

5. Discussion
5.1. Important results

Study demonstrates that using deep learning based

adaptive QoS optimization for MQTT

communication systems is both practical and

efficient. The suggested development model reached

a validation accuracy of 71.4%, so clarifying the

relationships between system metrics and optimal

QoS levels, aside the inherent challenges of a three

levels task in varied operational environments.

 Development model successfully constructed

internal representations of the elements affecting

QoS selection, as proven by its high prediction

confidence (>91%) across all tests since it only

allows the system to function when it is certain, this

high degree of confidence reduces the possibility of

misclassifications that could harm performance,

making it crucial for real applications.

 The adaptive system was more reliable than QoS

0 and used resources more efficiently, with an

average of 86.84% compared to about 70% for static

QoS 1 systems. These findings support our theory

that by dynamically taking system context and

temporal fluctuations into account, adaptive, data-

driven policies can perform better than both static

and heuristic methods.

 But the model is biased for QoS 0 across all

scenarios because QoS 2 constituting only 20.5% of

training samples, for future work collecting real-

world data to validate the synthetic dataset and

incorporating explicit constraints to enforce QoS 2

selection when appropriate.

5.2. Comparison with related work

Comparisons are challenging because of different

experimental setups; our results compare in a

constructive manner to related approaches:

• Our adaptive system outperforms the best

performing static policy by 2.06%, achieving

71.44% efficiency as opposed to 70% for

static QoS 1. Our system utilizes QoS 0 for

high-load situations, QoS 1 for balanced

conditions, and QoS 1 for essential

applications with ideal network conditions,

providing contextual optimization that static

policies cannot match.

• Comparing Rule-Based Systems

In contrast to standard rule-based systems,

which have greater adaption rates (around

45%), implying instability and frequent

needless modifications, our method shows

99.53% prediction confidence with stable

decision-making across all scenarios.

Consistent, very confident suggestions that

lessen system oscillation and enhance

operational stability are offered by the

SoftMax categorization architecture.

• Comparing Different ML Techniques

Our CNN-LSTM hybrid architecture

outperforms pure LSTM techniques

(reported 68-72% accuracy in similar tasks

[36]) by achieving 95.10% training accuracy

and 92.70% validation accuracy. Superior

QoS classification performance is achieved

by the convolutional layers, which allow

spatial feature extraction from the temporal

sequence data and capture patterns that pure

LSTM architectures overlook.

 The lack of labeled datasets in IoT machine

learning research is a significant gap that the

synthetic data generation methodology fills. The

feasibility of expert-knowledge-based synthesis for

training supervised models is demonstrated by our

50,000-sample dataset with a 100% quality score.

5.3. Analysis of per-class performance

The examination of per-class precision and recall

provide detailed information about our model's

classification performance in various QoS

circumstances. With weighted average precision,

recall, and F1-scores of 92.7%, our CNN-LSTM

architecture performs well across all three QoS

classes, as shown in Table 1. The model's

remarkable accuracy for QoS 0 (94.2%) shows that

it is highly reliable in detecting resource-constrained

situations when cautious QoS selection is essential.

System does not have to limit QoS tiers, that what

mean by high level of accuracy. Developed model

shows outstanding recall (95.1%) for QoS 1, which

is based on balanced operational conditions,

revealing successful recognition of system setting.

QoS 1 is significant because it is 43.6% of our

dataset and it’s the most chosen class in real

application.

 Strong recall features ensure that the system

operates at its decent during normal workloads with

no unnecessary drops in service quality.

A F1 score of 88.4%, the QoS 2 class maintains

balanced performance while constituting only

20.5% of the dataset, this proves that despite the lack

of many training instances for this class, the model

can steadily uncover the best conditions for highly

reliable communications. Limit to variance of 3.3%

between precision and recall metrics, the model's

consistent performance across all categories

indicates that it is not significantly biased toward

any single level of service quality, these metrics for

each category have a significant impact on the

deployment of the Internet of Things in the real

world.

 During regular stability while the strong recall of

Quality of Service 1 maintains system stability, the

high precision of Quality of Service 0 ensures

efficient resource usage in limited contexts. The

balanced performance of Quality of Service 2 means

that mission critical applications can rely on a

reliable service without any human assistance. The

smallest variance between categories (σ = 0.018)

indicates that our model can make context relevant

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

74

quality of service decisions across a wide range of

operational situations, demonstrating its

effectiveness.

 Our study for each chapter shows significant

advantages compared to fixed service quality

assignment methods. Usually, traditional methods

yield the same results consistently, but they do not

understand what is happening in the context as our

system does. Steady F1 scores among categories

illustrate model maintains its performance

consistently, which is a significant issue in current

adaptive quality of service methods. This is because

classification systems often favor the majority

classes in uneven datasets.

6. Conclusion
This study represented deep learning for optimizing

adaptive MQTT QoS in IoT environment. The

proposed approach combines three important

components to address ongoing issues in IoT

resource management:

• Systematic method for creating elevated

quality labeled datasets.

• A hybrid CNN LSTM design that improves

progressive needs in MQTT data flows.

• Controller at real time that used discission

making to verify is working efficiently.

The developed model under the testing shows

improvement than static QoS setting 71.4%

predicted accuracy, 92.7% supply efficiency, under

3% adaption rate and > 91% confidence on range of

working setting that make system more stability

under dynamic work.

 First, the framework for creating a synthetic

dataset addresses the lack of categorized data in IoT

machine learning research by providing a repeatable

methodology for developing supervised models in

relevant fields. Secondly, a deep learning-based

system for optimizing adaptive MQTT Quality of

Service in IoT, the proposed approach combines

three crucial components to address relentless issues

in limited resource IoT.

References

[1] T. Ramírez-Gordillo, A. Maciá-Lillo, F. A.

Pujol, N. García-D’Urso, J. Azorín-López, and

H. Mora, “Decentralized Identity Management

for Internet of Things (IoT) Devices Using

IOTA Blockchain Technology,” Future

Internet, vol. 17, no. 1, p. 49, 2025, doi:

10.3390/fi17010049.

[2] C. Liang, X. Li, W. Niu, and Y. Zhang, “Internet

of Things Driven Digital Twin for Intelligent

Manufacturing in Shipbuilding Workshops,”

Future Internet, vol. 17, no. 8, p. 368, 2025, doi:

10.3390/fi17080368.

[3] N. Naik, “Choice of Effective Messaging

Protocols for IoT Systems: MQTT, CoAP,

AMQP and HTTP,” IEEE Access, vol. 5, pp.

18347–18357, 2017, doi:

10.1109/ACCESS.2017.2759717.

[4] A. Shvaika et al., “A Distributed Architecture

for MQTT Messaging: The Case of TBMQ,”

Journal of Big Data, vol. 12, no. 1, p. 224, 2025.

[5] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and

G. Ferrari, “IoT-OAS: An OAuth-Based

Authorization Service Architecture for Secure

Services in IoT Scenarios,” IEEE Internet of

Things Journal, vol. 2, no. 5, pp. 443–454, 2015,

doi: 10.1109/JIOT.2015.2446296.

[6] P. P. Ray, “A Survey on Internet of Things

Architectures,” Journal of King Saud University

- Computer and Information Sciences, vol. 30,

no. 3, pp. 291–319, 2018, doi:

10.1016/j.jksuci.2016.10.003.

[7] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang,

and W. Zhao, “A Survey on Internet of Things:

Architecture, Enabling Technologies, Security

and Privacy, and Applications,” IEEE

Communications Surveys & Tutorials, vol. 19,

no. 4, pp. 2347–2376, 2017, doi:

10.1109/COMST.2017.2650741.

[8] Y. Hussein and A. Al-Jumaily, “Introductory

Chapter: Challenges and Solutions in Quality of

Service (QoS) – Optimizing Network

Performance,” in Challenges and Solutions in

QoS: Optimizing Network Performance, 2025.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep

Learning,” Nature, vol. 521, pp. 436–444, 2015,

doi: 10.1038/nature14539.

[10] K. Yi et al., “A Survey on Deep Learning-Based

Time Series Analysis with Frequency

Transformation,” in Proc. 31st ACM SIGKDD

Conf. Knowledge Discovery and Data Mining,

vol. 2, 2025.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-

Term Memory,” Neural Computation, vol. 9,

no. 8, pp. 1735–1780, 1997, doi:

10.1162/neco.1997.9.8.1735.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet Classification with Deep

Convolutional Neural Networks,” in Advances

in Neural Information Processing Systems, vol.

25, pp. 1097–1105, 2012.

[13] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and

M. Guizani, “Deep Learning for IoT Big Data

and Streaming Analytics: A Survey,” IEEE

Communications Surveys & Tutorials, vol. 20,

no. 4, pp. 2923–2960, 2018, doi:

10.1109/COMST.2018.2844341.

[14] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu,

“IoT Security Techniques Based on Machine

Learning,” IEEE Transactions on Cognitive

Communications and Networking, vol. 4, no. 1,

pp. 1–13, 2018, doi:

10.1109/TCCN.2018.2795525.

[15] M. A. Alsheikh, S. Lin, D. Niyato, and H. P.

Tan, “Machine Learning in Wireless Sensor

Networks: Algorithms, Strategies, and

Applications,” IEEE Communications Surveys

& Tutorials, vol. 16, no. 4, pp. 1996–2018,

2014, doi: 10.1109/COMST.2014.2320099.

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

75

[16] S. S. Gill, P. Garraghan, V. Stankovski et al.,

“Holistic Resource Management for Sustainable

and Reliable Cloud Computing: An Innovative

Solution,” Journal of Systems and Software,

vol. 155, pp. 104–129, 2019, doi:

10.1016/j.jss.2019.05.025.

[17] N. Abbas, Y. Zhang, A. Taherkordi, and T.

Skeie, “Mobile Edge Computing: A Survey,”

IEEE Access, vol. 6, pp. 6923–6943, 2018, doi:

10.1109/ACCESS.2017.2778308.

[18] S. H. Rafique et al., “A Review of AMQP

Protocol: Characteristics, Security Challenges

and Proposed Enhancement,” JOIV:

International Journal on Informatics

Visualization, vol. 9, no. 3, pp. 1283–1297,

2025.

[19] S. Pawar et al., “Evaluation of Quality of

Service Parameters for MQTT Communication

in IoT Application by Using Deep Neural

Network,” International Journal of Information

Technology, vol. 16, no. 2, pp. 1123–1136,

2024.

[20] M. A. Khan and K. Salah, “IoT Security:

Review, Blockchain Solutions, and Open

Challenges,” IEEE Access, vol. 6, pp. 27633–

27653, 2018, doi:

10.1109/ACCESS.2017.2749087.

[21] J. Gubbi, R. Buyya, S. Marusic, and M.

Palaniswami, “Internet of Things (IoT): A

Vision, Architectural Elements, and Future

Directions,” Future Generation Computer

Systems, vol. 29, no. 7, pp. 1645–1660, 2013,

doi: 10.1016/j.future.2013.01.010.

[22] C. Zhang, P. Patras, and H. Haddadi, “Deep

Learning in Mobile and Wireless Networking:

A Survey,” IEEE Communications Surveys &

Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019,

doi: 10.1109/COMST.2019.2904897.

[23] I. H. Sarker, “Machine Learning: Algorithms,

Real-World Applications and Research

Directions,” SN Computer Science, vol. 2, no.

160, 2021, doi: 10.1007/s42979-021-00592-x.

[24] A. C. Naik et al., “Enhancing IoT Security: A

Comprehensive Exploration of Privacy,

Security Measures, and Advanced Routing

Solutions,” Computer Networks, vol. 258, p.

111045, 2025.

[25] T. Azad, M. H. Newton, J. Trevathan, and A.

Sattar, “IoT Edge Network Interoperability,”

Computer Communications, vol. 236, p.

108125, 2025.

[26] P. J. Ganesh, B. M. Sundaram, P. K.

Balachandran, and G. B. Mohammad,

“IntDEM: An Intelligent Deep Optimized

Energy Management System for IoT-Enabled

Smart Grid Applications,” Electrical

Engineering, vol. 107, no. 2, pp. 1925–1947,

2025.

[27] N. C. Luong et al., “Applications of Deep

Reinforcement Learning in Communications

and Sensing,” IEEE Communications Surveys

& Tutorials, vol. 21, no. 4, pp. 3133–3174,

2019, doi: 10.1109/COMST.2019.2916583.

[28] Z. Zhou et al., “Edge Intelligence: Paving the

Last Mile of Artificial Intelligence With Edge

Computing,” Proceedings of the IEEE, vol. 107,

no. 8, pp. 1738–1762, 2019, doi:

10.1109/JPROC.2019.2918951.

[29] S. Siami-Namini, N. Tavakoli, and A. Siami

Namin, “A Comparison of ARIMA and LSTM

in Forecasting Time Series,” International

Journal of Mathematical Sciences and

Computing, vol. 5, pp. 16–30, 2019, doi:

10.5815/ijmsc.2019.04.02.

[30] Y. Tian and L. Pan, “Predicting Short-Term

Traffic Flow by Long Short-Term Memory

Recurrent Neural Network,” Sensors, vol. 15,

pp. 17696–17711, 2015, doi:

10.3390/s150817696.

[31] K. Ullah et al., “Short-Term Load Forecasting:

A Comprehensive Review and Simulation

Study with CNN-LSTM Hybrids Approach,”

IEEE Access, 2024.

[32] A. Azzouni and G. Pujolle, “A Long Short-

Term Memory Recurrent Neural Network

Framework for Network Traffic Matrix

Prediction,” IEEE Transactions on Network and

Service Management, vol. 14, no. 4, pp. 1090–

1098, 2017, doi:

10.1109/TNSM.2017.2767318.

[33] F. Karim, S. Majumdar, H. Darabi, and S. Chen,

“LSTM Fully Convolutional Networks for Time

Series Classification,” IEEE Access, vol. 6, pp.

1662–1669, 2018, doi:

10.1109/ACCESS.2017.2779939.

[34] D. Xu et al., “A Novel TCN-Augmented CNN-

LSTM Architecture for Accurate Monthly

Runoff Forecasting,” Earth Science Informatics,

vol. 18, no. 3, p. 467, 2025.

[35] V. Gudivada, A. Apon, and J. Ding, “Data

Quality Considerations for Big Data and

Machine Learning: Going Beyond Data

Cleaning and Transformations,” International

Journal on Advances in Software, vol. 10, no. 1,

pp. 1–20, 2017.

[36] G. Zhao, W. Pang, B. Wang et al., “Intelligent

Traffic Flow Forecasting Using Optimized

GRU Model with Dempster–Shafer Fusion,”

IEEE Access, vol. 8, pp. 171608–171620, 2020,

doi: 10.1109/ACCESS.2020.3024620.

[37] H. Zeghida, M. Boulaiche, and R. Chikh et al.,

“XMID-MQTT: Explaining Machine Learning-

Based Intrusion Detection System for MQTT

Protocol in IoT Environment,” International

Journal of Information Security, vol. 24, p. 128,

2025, doi: 10.1007/s10207-025-01036-w.

[38] J. Et-Tousy and A. Zyane, “Machine Learning-

Driven QoS Optimization for IoT in OneM2M:

A Novel Approach for Traffic and Resource

Management,” in Proc. 12th Int. Conf. Future

Internet of Things and Cloud (FiCloud), 2025,

pp. 106–111, doi:

10.1109/FiCloud66139.2025.00023.

[39] K. Lima, T. D. Oyetoyan, R. Heldal, and W.

Hasselbring, “Evaluation of MQTT Bridge

Architectures in a Cross-Organizational

Context,” arXiv preprint arXiv:2501.14890,

2025.

[40] EMQX Team, “A Beginner’s Guide to MQTT

Performance Testing,” EMQX Blog, Nov. 6,

2023. [Online]. Available:

https://www.emqx.com/en/blog/a-beginner-

https://www.emqx.com/en/blog/a-beginner-guide-to-mqtt-performance-testing

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

76

guide-to-mqtt-performance-testing. [Accessed:

Oct. 26, 2025].

[41] Altoros Labs, “A Collection of 20+ MQTT

Broker Performance Benchmarks (2020–

2023),” Altoros Labs Blog, Aug. 2, 2023.

[Online]. Available:

https://www.altoroslabs.com/blog/a-collection-

of-mqtt-broker-performance-benchmarks-

2020-2023/.

[42] L. Reiher, B. Lampe, T. Woopen, R. van

Kempen, T. Beemelmanns, and L. Eckstein,

“Enabling Connectivity for Automated

Mobility: A Novel MQTT-Based Interface

Evaluated in a 5G Case Study on Edge–Cloud

Lidar Object Detection,” arXiv, Sep. 8, 2022.

[Online]. Available:

https://arxiv.org/abs/2209.03630. [Accessed:

Oct. 26, 2025].

https://www.emqx.com/en/blog/a-beginner-guide-to-mqtt-performance-testing

