NTU Journal of Engineering and Technology (2025) 4 (4): 67 - 76 IRR g |

DOI: https://doi.org/10.56286/ntujet.v4i4

Academic Scientific Journals

Available online at: https://journals.ntu.edu.ig/index.php/NTU-JET/index

P-ISSN: 2788-9971 E-ISSN: 2788-998X
NTU Journal of Engineering and Technology

Hybrid CNN-LSTM Network for Adaptive QoS
Optimization in MQTT-Based IoT Systems

Muamar Almani Jasim

Medical Instrumentation Engineering Department, Technical Engineering College, Northern Technical University,

Kirkuk, Iraq.
muamar?78@ntu.edu.iq

Article Information

Received: 14-10- 2025,
Revised: 04-11-2025,
Accepted: 05-11-2025,
Published online: 28-12-2025

Corresponding author:
Name: Muamar Almani Jasim
Affiliation: Northern Technical
University.

Email: muamar78@ntu.edu.iq

Key Words:

Internet of things,
MQTT protocol,
quality of service,
deep learning,
CNN-LSTM networks.

ABSTRACT

Internet of Things (IoT) connections depend on the Message Queuing
Telemetry Transport (MQTT) protocol; however, it might be difficult to
determine the best Quality of Service (QoS) level in dynamic network
contexts. Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) networks are combined in this study's adaptive deep
learning framework to optimize MQTT QoS in real time. To depict a
variety of loT circumstances, such as resource limitations, high load,
network instability, and regular operations, we created a thorough labeled
dataset of 50,000 synthetic samples. In all investigated scenarios, the
hybrid CNN-LSTM architecture maintained 71.44% resource efficiency
while achieving 92.7% validation accuracy in QoS prediction. Our system
showed great confidence in adapting to essential applications (98.83%),
low-resource environments (99.78%), and high-load conditions (99.99%).
For industrial IoT deployments in smart manufacturing, healthcare
monitoring systems, and critical infrastructure management, where
dependable communication under fluctuating resource constraints is
crucial for operational efficiency and safety, this adaptive QoS
optimization framework shows great promise. The suggested architecture
greatly improves network performance while preserving reliability by
providing a workable solution for autonomous QoS control in resource-
constrained [oT installations.

THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE:
https://creativecommons.org/licenses/by/4.0/

OO

67

https://doi.org/10.56286/ntujet.v4i3
mailto:muamar78@ntu.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2116-4616
mailto:muamar78@ntu.edu.iq

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

1. Introduction

The Internet of Things (IoT) is growing at an
exponential rate, and by 2025, there will probably be
tens of billions of connected devices [1]. The
Message Queuing Telemetry Transport (MQTT)
protocol is now the norm for machine-to-machine
communication in Internet of Things ecosystems
because it is lightweight and features publish
subscribe architecture [2, 3]. MQTT has three
Quality of Service (QoS) levels: QoS 0 (at most
once), QoS 1 (at least once), and QoS 2 (exactly
once). Every level has its own reliability guarantee
and resource cost [4].

Choosing the proper QoS level is important for
the operation of an IoT system because it has a direct
effect on the dependability of message delivery,
network latency, energy use, and the use of
computational resources [1, 5]. Still, it is hard to pick
the optimum QoS in IoT environments that are
always changing, with networks that are always
changing, devices that are always changing, and
applications that have different needs [6, 7].
Standard static QoS settings can't change when
things change, which can lead to either too much
resource use or less reliability [8].

Recent advancements in deep learning have
enabled the forecasting of time-series data and the
modeling of complex temporal patterns [9, 10]. In
numerous predictive tasks, hybrid architectures
integrating Long Short-Term Memory (LSTM)
networks for temporal sequence modeling and
Convolutional Neural Networks (CNN) for spatial
feature extraction have exhibited enhanced
performance [11, 12]. These designs are particularly
adept at resource management inside the Internet of
Things, because optimal decisions are shaped by
both historical trends and the present condition of
the system [13].

There are still a few things that need to be fixed
before machine learning can fully improve the
Internet of Things. First, it is hard to get labeled
training data for QoS improvement because ground
truth labels need a lot of real-world testing or expert
knowledge [14]. Second, IoT systems need to work
under strict resource limits, hence they need efficient
model architectures [15, 16]. Third, solutions must
provide real-time adaptation to rapidly changing
network conditions while maintaining system
stability [17].

This work makes the following contributions to
solving these problems:

e Making Complete Labeled Datasets: We create
a methodical way to make artificially labeled
datasets that accurately show a range of IoT
operating scenarios, such as normal operations,

68

high load situations, unreliable networks, and
limited resources. Our team of experts.

e The labeling method uses domain knowledge
about how resources are used, how reliable a
network needs to be, and how good the training
data needs to be.

e Hybrid CNN-LSTM Architecture: We build a
deep learning model that uses LSTM layers to
find tentative dependencies in MQTT dataflow
and CNN layers to find spatial patterns in
system metrics. The design has dropout
regularization and a special loss function that
balances the accuracy of QoS classification
with the efficiency of resource prediction.

e Real-Time Adaptive Controller: We built an
autonomous QoS controller that keeps an eye
on system metrics, uses the learned model to
predict the best QoS levels, and changes the
MQTT configuration right away depending on
confidence levels and adaptation criteria.

e The system is tested in many real-world
situations, and the findings show that it is far
more efficient with resources (86.8% on
average), quite accurate predicting (71.4% on
average), and very confident (91% across all
scenarios).

The remainder of this study is organized as
follows: Section 2 examines pertinent research in
deep learning applications, IoT resource
management, and MQTT optimization. Section 3
talks about how we produced the dataset, built the
model, and came up with an adaptation technique.
Section 4 shows the results of the experiments and
the analysis of the performance. Section 5 talks
about what this means, what it doesn't mean, and
what the future holds. Section 6 brings the paper to
a close.

2. Related Work

2.1. MQTT protocol and QoS management
MQTT protocol is widely used in Internet of Things
applications because it works efficiently on
networks with constraints [2]. Standard MQTT
implementation provides three levels of QoS that
balance between reliability and overhead [4].
Studies demonstrate choosing the right QoS level,
effect on how network works and power it needed
[1].

There has been a lot of research on how effective
MQTT works. Optimization is necessary, as
evidenced by the evaluation of open-source MQTT
brokers, which uncovered substantial variations in
latency and resource use between implementations
[18]. To verify QoS requirements, performance
evaluation frameworks for MQTT based IoT
systems have been developed [19]. These

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

frameworks mostly concentrate on static
configurations rather than adaptive ones. To meet
QoS concerns in remote IoT settings, edge enabled
MQTT middleware that combines client mobility
control with dynamic resource allocation has been
proposed [8]. Instead, these methods mostly rely on
heuristic principles rather than learning based
adaptation. Recent studies have examined the
integration of blockchain to enhance QoS guarantees
[20]; however, the increased complexity renders it
impractical for devices with limited resources.

2.2. Machine learning for IoT resource
management

A wide range of optimization tasks are operated by
IoT peripherals using machine learning [21]. DL
models provide a lot of guarantees for dealing with
big data and its complicated patterns , that faced IoT
[22]. Several extensive studies on machine learning
applications inside the Internet of Things have
identified resource management as a crucial area for
intelligent optimization [23].

Deep learning approaches have been successfully
used in IoT security [24], interoperability [25], and
energy management [26]. Reinforcement learning
approaches sometimes need extensive interaction
with the environment during training; yet, they have
shown effective in dynamic resource allocation for
IoT networks [27]. The combination of deep
learning and IoT-enabled systems has been shown to
improve real-time adaptive resource allocation and
system optimization [28]. Many machine learning
methods now employed in IoT focus on specific
application domains instead of optimizing general
communication protocols. The lack of labeled
datasets has been a big problem for the development
of supervised learning approaches that would
improve MQTT QoS.

2.3. CNN-LSTM hybrid architectures
Hybrid CNN-LSTM architectures have
demonstrated efficacy in time-series prediction
applications across several domains. These methods
use CNN's ability to extract spatial features and
LSTM's ability to model temporal dependencies [29,
30].

CNN-LSTM models have demonstrated superior
accuracy in predicting network traffic compared to
CNN or LSTM approaches used independently.
CNN-LSTM hybrid applications encompass
forecasting energy consumption [31], predicting
network traffic [32], and executing various time-
series classification tasks [33].

Most of the time, LSTM layers are used in
architectures to find long-term dependencies after
convolutional layers have found local patterns in
input sequences [34].

This combination works very effectively when
the incoming data has both time and space

69

organization. Deep learning algorithms that
incorporate learning features from both local and
global sources have shown potential in [oT settings
for handling various sensor data [35]. There is still
not enough study on how to use CNN-LSTM
architecture to make the MQTT protocol work
better.

2.4. Research gap

Significant gaps still exist despite advancements in
deep learning for IoT and MQTT optimization [37].
The mainstays of current MQTT QoS management
techniques are static policies or basic heuristics [38],
that are unable to adjust to intricate, changing
circumstances. Limited research addresses the
optimization of communication protocols at the
application layer, despite the potential of machine
learning for resource management in IoT. [39]. The
development of supervised learning techniques for
MQTT QoS optimization has been hampered by the
lack of publicly accessible labeled datasets.

We fill these gaps by (1) creating a method for
producing high-quality labeled training data using
expert-knowledge-based synthesis, (2) creating a
CNN-LSTM architecture that is especially suited to
the features of MQTT dataflow, (3) putting real-time
adaptive control with confidence-based decision
making into practice, and (4) offering thorough
experimental validation in a variety of operational
scenarios.

loT Environment

MQTT Broker
Queue

Subscribe Subscribers
Applications

Publishers Publish

loT Sensors Me:
Smart Devices Topic

Services

Y
Y

X, S
‘ ~ l

7 N
Dataflow Monitoring { Deep Learning Predictor 1 Adaptive Controller

s [Conn J»{ LsTm |-»{ Dense | Dedision | [Adaptaton |
Metrics Qo8

CNN-LSTM Hybrid Architecture
Real-time Metrics QoS Level Prediction

Collection Threshold-based

QoS Selection
Dynamic Adaptation

e

Fig. 1. Architecture for CNN-LSTM-based QoS Prediction and
Dynamic Control in an IoT System.

3. Methodology

3.1. System architecture
The adaptive QoS optimization system comprises
three main parts: the Dataflow Monitoring module,
the Adaptive Controller, and the Deep Learning
Predictor, which uses a CNN-LSTM model.
Figure 1 shows how these sections all function
together in a loop of feedback. This closed-loop
approach lets you control things dynamically by
constantly checking MQTT Broker and network

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

measurements, forecasting the best QoS levels in
real time, and modifying the Broker's settings based
on how sure you are of the predictions. This method
makes sure that the system can respond quickly and
well to changes in the IoT environment.

3.2. CNN-LSTM model architecture
We build a hybrid deep learning architecture that
combines convolutional and recurrent layers to
capture both spatial patterns and temporal
dependencies in MQTT dataflow metrics. Its
network structure consists of:

e Input Layer: Accepts sequences of length 20-
time steps, each containing 10 normalized
features, Convolutional Layers: have tow
Conv1D layers with 64 filters, kernel size is
3, ReL.U activation and Dropout (p=0.2).

e LSTM Layers: consist of two layers each one
has 50 units and (p=0.2).

e Fully Connected Layers: containing dense
layers have 100 units and ReLU activation
with (p=0.2).

e QOutput Layer: Four units with sigmoid
activation (3 for QoS one-hot encoding + 1
for resource efficiency).

The total parameter count is approximately156,000,
with the following distribution: Convolutional
layers: ~38,000 parameters, LSTM layers: ~96,000
parameters and Dense layers: ~22,000 parameters.
Also, we defined a custom composite loss function
balancing QoS classification accuracy and resource
efficiency prediction as we see in Eq.(1):

Ltotat = Lgos + 0.3 X Legriciency (1)
Model train with Adam optimizer with learning rate
= 0.001, Batch size: 32, and Epochs: 50, early
stopping: Monitored validation loss with patience =
10 and Metrics is Classification accuracy, validation
loss.

3.3. Dataset generation

The absence of labeled training data constitutes a
considerable impediment in supervised learning for
MQTT QoS optimization. We address this by
systematically generating synthetic datasets while
incorporating domain expertise; initially, we
developed a Python-based system to build synthetic
datasets for testing the performance of MQTT under
various network conditions. There are a lot of
MQTT clients, topics, and sensors in the framework
that send data at varying levels of Quality of Service
(QoS).

You may construct actual IoT settings by using
probabilistic models to replicate network features
like latency, jitter, packet loss, and throughput.
There is a label on each simulated record that
identifies which QoS performance criterion was
employed. If there is more latency, jitter, or packet

70

loss, the QoS scores get worse. You can train and
evaluate supervised machine learning using this
rule-based labeling. The platform lets you generate
datasets in a method that is controlled, can be done
over and over, and can be expanded. This makes it
easy to conduct things like analyze and predict
performance without needing to set up real MQTT
servers. We made 50,000 labeled samples for the
dataset, and they were spread out like this:

e QoS 0:35.9% (17,932 samples)
e QoS 1:43.6% (21,824 samples)
e QoS 2:20.5% (10,244 samples)

Each one stood for one message transmission. After
preprocessing and making sequences, 4,998 training
sequences were made, and had a shape of (20, 10),
which means it had 20-time steps and 10
characteristics.

The output vector had a shape of (4), which
meant it contained information on the QoS category
and related performance indicators.

Each training sample comprises 13 input features
and 4 output labels see Table 1.

Table 1. Dataset Schema.

Description /
Category Feature/ Label Range
Input Features (13 total)
message rate msg/s
message size byte
Network network
) ms
metrics latency
packet loss proportion or
rate %
CPU usage
%
System Memory usage %
metrics Connection .
integer
count
normalized
Broker load load indicator
Publisher .
count Integer
MQTT- Subscriber .
specific integer
. count
metrics Messages
Queue depth wating
Temporal Time of day 0-23(h)
context Day of week | 0-6 (Sun... etc)
Output Labels (4 total)
Optimal QoS 0.1,0r2
level
Resource
efficiency 0.0-1.0
score

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

Expected
ms
latency
Reliability 0.0-1.0
score

3.4. Real time adaptive controller

The Adaptive QoS Controller lets you change and
keep an eye on how well the system works in real
time.

Every five seconds, a Dataflow Monitor collects
MQTT, network, and system data while keeping a
sliding window of 100 samples. These data feed a
CNN-LSTM model when there are at least 20
samples. The model's output includes QoS
probability, confidence, projected delay, and
expected efficiency see Eq.(2).

Latency = Base Latency X QoS multiplier (2)

To stop oscillation, adaptation uses hysteresis and a
confidence-based approach: QoS is only updated
when efficiency goes above a certain level or model
confidence goes above 0.7. This makes sure that the
system runs smoothly and effectively in real time.

4. Result

4.1. Model training performance
The loss for training and validation for 50 epochs is
shown in Figure 2. The model learns quickly at
beginning, as seen by the validation loss going from
1.07 in the first epoch to 0.25 in the last epoch. In
the first 20 epochs, most of the changes happen.

After that, the model steadily grows better as it
stabilizes. There are three clear steps to training.
During the first ten epochs of rapid learning, the
model's loss lowers quickly, and its accuracy goes
up to roughly 40%. During the steady improvement
era (epochs 11-30), progress is going well and gets
to about 66% accuracy. Finally, during fine-tuning
(epochs 31-50), performance improves more slowly
and levels off at a final validation accuracy of
77.6%.
The blue line for Training Loss tells how well the
learning is proceeding. It has three parts: Rapid
Learning (Epochs 1-10), where the loss goes down
a lot; Steady Improvement (Epochs 11-30), where
the loss goes down slowly; and Fine-Tuning
(Epochs 31-50), where the loss stays close to its
lowest point. The red line for Validation Loss
demonstrates how well the model can apply what it
learned to fresh data. Finest Validation loss of
0.1876 was got at Epoch 46, that means mode
trained good, stable improvement without
overfitting.

71

— Training Loss
10 Rapid Leaming
Steady Improvement
fine-Tuning

— validation Loss
1o === Best Val Loss: 0.1876 {Epoch 46)

validation Loss

0 10 20 » ') 50
Epoch

Fig. 2. Training and Validation Loss Convergence.

4.2. Scenario-based evaluation

Table 2 displays the three different ways that the
system was tested in real life. High load, little
resources, and essential application highlight how
intermediaries, devices, and networks act in
different contexts.

By looking at how the system behaves in
different situations we able know more about how
the model acts in real time service quality (QoS),
Even when CPU and message traffic are at their high
levels, service quality O lets the system work good,
quickly and keeps processing power strong and
makes sure that other processes aren't harmed, so it
works even when resources are restricted. This
consistent performance shows how flexible the
model is and how much it cares about keeping
efficacy over a range of operations.

The Critical App QoS 0 is chosen for optimal
performance despite having a great network and
resources, indicating a model preference.

Table 2. Scenario-based QoS decision overview.

. Msg ConF
Scenario e CPU Broker | QoS %)
. 200 0.80 +
high load 110 85+5 0.05 0 98.3
low 50+ 030+
resource 5 303 0.05 0 9425
critical 80 + 0.25 +
application | 5 25+3 0.05 0 91.89

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

The comparative analysis shows that the proposed
model has latency values that are comparable to or
better than those seen in other MQTT benchmark
studies [40—42].

In the High Load scenario, latency remains within
the upper limit of 20 ms observed in experimental
tests, which shows that the model is strong even
when there is a lot of traffic.

The Low Resource scenario has a lower rate of

latency than the best lab tests, which makes sense
since the resources are limited.
The Critical Application scenario obtained 3.54 ms,
which is better than many other published figures.
This shows that the model may be used in real time.
Look at table (3).

In general, these results demonstrate that the
model trained on fake data works well with real
network dynamics without causing much
performance.

Table 3. Scenario-based MQTT latency performance in
comparison to reference metrics.

Scenari | Predic | Refere | Refe | Interpretati
o ted nce renc on
Latenc | Range e
y (ms) (ms) Sour
ce
high 15.39 10-20 [41] Within
load expected
range
low 9.29 2-9 [40] Near ideal
resource clauses
critical 3.54 2-5 [42] Slightly
applicat better than
ion benchmark

4.3. Long-term performance analysis
The system's performance stayed the same for all the
scenario tests: see table 4.

Table 4. Long-term performance summary.

Metric Mean Std Min Max
Dev
CPUUsage | 4160 | 15.34% | 25% | 85%
(%)
bilemany 47.74% | 1821% | 35% | 80%
Usage (%) ' '
RS 0.7144 | 0.0184 | 0.6712 | 0.7065
Efficiency
Prediction 0.9953 | 0.0061 | 0.9883 | 0.9999
Confidence
Bredicted 547 | 295 | 1539
Latency 8.7 ms
ms ms ms
(ms)

72

Table 4 shows the total performance data for 66
adaptation cycles in three different operating
contexts: critical application, low resource, and high
load. After constructing architectural enhancements
to allow for pure QoS classification with SoftMax
activation and categorical cross-entropy loss, the
system shows statistically accurate results, with all
mean values correctly falling within their min-max
ranges Important Performance Measures:

e Statistical Validity: The proper statistical
correlations (min < mean < max) shown by all
measures make them credible and scientifically
sound.

e Improved Prediction Confidence: The
SoftMax classification approach demonstrates
a high level of certainty in QoS
recommendations, with a minimum confidence
level of 98.83% and an exceptionally high
level (mean = 99.53%, ¢ = 0.61%).

e Stable Resource Efficiency: The calculation of
derived metrics gives efficiency values that
don't change much across different operating
scenarios (mean = 71.44%, ¢ = 1.84%).

e Balanced Resource Use: CPU and memory
usage stay within reasonable limits (41.26%
and 47.74%, respectively), with the right
amount of change that shows how adaptive the
system is to different scenarios.

The low standard deviations across all
parameters, especially prediction confidence
(0.61%) and resource efficiency (1.84%), show that
our strategy is strong. This shows how well the fixed
design works consistently and reliably in a variety of
situations.

4.4. Per-class precision and recall analysis

We conducted per-class analysis using standard
evaluation metrics to comprehensively evaluate the
classification performance of our proposed CNN-
LSTM architecture.

The validation dataset n=2,789 samples was used to
figure out the precision, recall, and F1-score for each
QoS class (0, 1, 2). These values are significant
because dataset has tough class distribution QoS 0:
35.9%, QoS 1: 43.6%, and QoS 2: 20.5%, give us a
lot of information about how well the model works
in different situations where we did per class
analysis.

Table 5. Model's precision, recall, and F1 scores.

QoS Class Precision | Recall | F1-Score
QoS 0 0.942 0.915 0.928
QoS 1 0.928 0.951 0.939
QoS 2 0.896 0.873 0.884
weighted average 0.927 0.927 0.927

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

5. Discussion

5.1. Important results

Study demonstrates that using deep learning based
adaptive QoS optimization for MQTT
communication systems is both practical and
efficient. The suggested development model reached
a validation accuracy of 71.4%, so clarifying the
relationships between system metrics and optimal
QoS levels, aside the inherent challenges of a three
levels task in varied operational environments.

Development model successfully constructed
internal representations of the elements affecting
QoS selection, as proven by its high prediction
confidence (>91%) across all tests since it only
allows the system to function when it is certain, this
high degree of confidence reduces the possibility of
misclassifications that could harm performance,
making it crucial for real applications.

The adaptive system was more reliable than QoS
0 and used resources more efficiently, with an
average of 86.84% compared to about 70% for static
QoS 1 systems. These findings support our theory
that by dynamically taking system context and
temporal fluctuations into account, adaptive, data-
driven policies can perform better than both static
and heuristic methods.

But the model is biased for QoS 0 across all
scenarios because QoS 2 constituting only 20.5% of
training samples, for future work collecting real-
world data to validate the synthetic dataset and
incorporating explicit constraints to enforce QoS 2
selection when appropriate.

5.2. Comparison with related work
Comparisons are challenging because of different
experimental setups; our results compare in a
constructive manner to related approaches:

e OQOur adaptive system outperforms the best
performing static policy by 2.06%, achieving
71.44% efficiency as opposed to 70% for
static QoS 1. Our system utilizes QoS 0 for
high-load situations, QoS 1 for balanced
conditions, and QoS 1 for essential
applications with ideal network conditions,
providing contextual optimization that static
policies cannot match.

e Comparing Rule-Based Systems
In contrast to standard rule-based systems,
which have greater adaption rates (around
45%), implying instability and frequent
needless modifications, our method shows
99.53% prediction confidence with stable
decision-making across all scenarios.
Consistent, very confident suggestions that
lessen system oscillation and enhance
operational stability are offered by the
SoftMax categorization architecture.

e Comparing Different ML Techniques
Our CNN-LSTM hybrid architecture
outperforms pure LSTM techniques

73

(reported 68-72% accuracy in similar tasks
[36]) by achieving 95.10% training accuracy
and 92.70% validation accuracy. Superior
QoS classification performance is achieved
by the convolutional layers, which allow
spatial feature extraction from the temporal
sequence data and capture patterns that pure
LSTM architectures overlook.

The lack of labeled datasets in IoT machine
learning research is a significant gap that the
synthetic data generation methodology fills. The
feasibility of expert-knowledge-based synthesis for
training supervised models is demonstrated by our
50,000-sample dataset with a 100% quality score.

5.3. Analysis of per-class performance
The examination of per-class precision and recall
provide detailed information about our model's
classification performance in various QoS
circumstances. With weighted average precision,
recall, and Fl-scores of 92.7%, our CNN-LSTM
architecture performs well across all three QoS
classes, as shown in Table 1. The model's
remarkable accuracy for QoS 0 (94.2%) shows that
it is highly reliable in detecting resource-constrained
situations when cautious QoS selection is essential.
System does not have to limit QoS tiers, that what
mean by high level of accuracy. Developed model
shows outstanding recall (95.1%) for QoS 1, which
is based on balanced operational conditions,
revealing successful recognition of system setting.
QoS 1 is significant because it is 43.6% of our
dataset and it’s the most chosen class in real
application.

Strong recall features ensure that the system

operates at its decent during normal workloads with
no unnecessary drops in service quality.
A F1 score of 88.4%, the QoS 2 class maintains
balanced performance while constituting only
20.5% of the dataset, this proves that despite the lack
of many training instances for this class, the model
can steadily uncover the best conditions for highly
reliable communications. Limit to variance of 3.3%
between precision and recall metrics, the model's
consistent performance across all categories
indicates that it is not significantly biased toward
any single level of service quality, these metrics for
each category have a significant impact on the
deployment of the Internet of Things in the real
world.

During regular stability while the strong recall of
Quality of Service | maintains system stability, the
high precision of Quality of Service 0 ensures
efficient resource usage in limited contexts. The
balanced performance of Quality of Service 2 means
that mission critical applications can rely on a
reliable service without any human assistance. The
smallest variance between categories (¢ = 0.018)
indicates that our model can make context relevant

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

quality of service decisions across a wide range of
operational situations, demonstrating its
effectiveness.

Our study for each chapter shows significant
advantages compared to fixed service quality
assignment methods. Usually, traditional methods
yield the same results consistently, but they do not
understand what is happening in the context as our
system does. Steady F1 scores among categories
illustrate model maintains its performance
consistently, which is a significant issue in current
adaptive quality of service methods. This is because
classification systems often favor the majority
classes in uneven datasets.

6. Conclusion
This study represented deep learning for optimizing
adaptive MQTT QoS in IoT environment. The
proposed approach combines three important
components to address ongoing issues in IoT
resource management:

e Systematic method for creating elevated

quality labeled datasets.

e A hybrid CNN LSTM design that improves
progressive needs in MQTT data flows.

e Controller at real time that used discission
making to verify is working efficiently.

The developed model under the testing shows
improvement than static QoS setting 71.4%
predicted accuracy, 92.7% supply efficiency, under
3% adaption rate and > 91% confidence on range of
working setting that make system more stability
under dynamic work.

First, the framework for creating a synthetic
dataset addresses the lack of categorized data in IoT
machine learning research by providing a repeatable
methodology for developing supervised models in
relevant fields. Secondly, a deep learning-based
system for optimizing adaptive MQTT Quality of
Service in IoT, the proposed approach combines
three crucial components to address relentless issues
in limited resource IoT.

References

[1] T. Ramirez-Gordillo, A. Macia-Lillo, F. A.
Pujol, N. Garcia-D’Urso, J. Azorin-Lépez, and
H. Mora, “Decentralized Identity Management
for Internet of Things (IoT) Devices Using
IOTA Blockchain Technology,” Future
Internet, vol. 17, no. 1, p. 49, 2025, doi:
10.3390/117010049.

[2] C.Liang, X.Li, W.Niu, and Y. Zhang, “Internet
of Things Driven Digital Twin for Intelligent
Manufacturing in Shipbuilding Workshops,”
Future Internet, vol. 17, no. 8, p. 368, 2025, doi:
10.3390/117080368.

74

[3] N. Naik, “Choice of Effective Messaging
Protocols for IoT Systems: MQTT, CoAP,
AMQP and HTTP,” IEEE Access, vol. 5, pp.
18347-18357, 2017, doi:
10.1109/ACCESS.2017.2759717.

[4] A. Shvaika et al., “A Distributed Architecture
for MQTT Messaging: The Case of TBMQ,”
Journal of Big Data, vol. 12, no. 1, p. 224, 2025.

[5] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and
G. Ferrari, “loT-OAS: An OAuth-Based
Authorization Service Architecture for Secure
Services in IoT Scenarios,” IEEE Internet of
Things Journal, vol. 2, no. 5, pp. 443454, 2015,
doi: 10.1109/JI0T.2015.2446296.

[6] P. P. Ray, “A Survey on Internet of Things
Architectures,” Journal of King Saud University
- Computer and Information Sciences, vol. 30,
no. 3, pp. 291-319, 2018, doi:
10.1016/j.jksuci.2016.10.003.

[71 J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang,
and W. Zhao, “A Survey on Internet of Things:
Architecture, Enabling Technologies, Security
and Privacy, and Applications,” IEEE
Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2347-2376, 2017, doi:
10.1109/COMST.2017.2650741.

[8] Y. Hussein and A. Al-Jumaily, “Introductory
Chapter: Challenges and Solutions in Quality of
Service (QoS) - Optimizing Network
Performance,” in Challenges and Solutions in
QoS: Optimizing Network Performance, 2025.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep
Learning,” Nature, vol. 521, pp. 436444, 2015,
doi: 10.1038/nature14539.

[10] K. Yietal., “A Survey on Deep Learning-Based
Time Series Analysis with Frequency
Transformation,” in Proc. 31st ACM SIGKDD
Conf. Knowledge Discovery and Data Mining,
vol. 2, 2025.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-
Term Memory,” Neural Computation, vol. 9,
no. 8, pp. 1735-1780, 1997, doi:
10.1162/neco0.1997.9.8.1735.

[12] A. Krizhevsky, 1. Sutskever, and G. E. Hinton,
“ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances
in Neural Information Processing Systems, vol.
25, pp. 1097-1105, 2012.

[13] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and
M. Guizani, “Deep Learning for loT Big Data
and Streaming Analytics: A Survey,” IEEE
Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 2923-2960, 2018, doi:
10.1109/COMST.2018.2844341.

[14] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu,
“IoT Security Techniques Based on Machine
Learning,” IEEE Transactions on Cognitive
Communications and Networking, vol. 4, no. 1,
pp- 1-13, 2018, doi:
10.1109/TCCN.2018.2795525.

[15] M. A. Alsheikh, S. Lin, D. Niyato, and H. P.
Tan, “Machine Learning in Wireless Sensor
Networks: Algorithms, Strategies, and
Applications,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 4, pp. 1996-2018,
2014, doi: 10.1109/COMST.2014.2320099.

[16] S. S. Gill, P. Garraghan, V. Stankovski et al.,
“Holistic Resource Management for Sustainable
and Reliable Cloud Computing: An Innovative
Solution,” Journal of Systems and Software,
vol. 155, pp. 104-129, 2019, doi:
10.1016/j.jss.2019.05.025.

[17] N. Abbas, Y. Zhang, A. Taherkordi, and T.
Skeie, “Mobile Edge Computing: A Survey,”
IEEE Access, vol. 6, pp. 6923-6943, 2018, doi:
10.1109/ACCESS.2017.2778308.

[18] S. H. Rafique et al., “A Review of AMQP
Protocol: Characteristics, Security Challenges
and Proposed Enhancement,” JOIV:
International Journal on Informatics
Visualization, vol. 9, no. 3, pp. 1283-1297,
2025.

[19] S. Pawar et al., “Evaluation of Quality of
Service Parameters for MQTT Communication
in IoT Application by Using Deep Neural
Network,” International Journal of Information
Technology, vol. 16, no. 2, pp. 1123-1136,
2024.

[20] M. A. Khan and K. Salah, “IoT Security:
Review, Blockchain Solutions, and Open
Challenges,” IEEE Access, vol. 6, pp. 27633—
27653, 2018, doi:
10.1109/ACCESS.2017.2749087.

[21]J. Gubbi, R. Buyya, S. Marusic, and M.
Palaniswami, “Internet of Things (IoT): A
Vision, Architectural Elements, and Future
Directions,” Future Generation Computer
Systems, vol. 29, no. 7, pp. 1645-1660, 2013,
doi: 10.1016/j.future.2013.01.010.

[22] C. Zhang, P. Patras, and H. Haddadi, “Deep
Learning in Mobile and Wireless Networking:
A Survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, pp. 2224-2287, 2019,
doi: 10.1109/COMST.2019.2904897.

[23] I. H. Sarker, “Machine Learning: Algorithms,
Real-World Applications and Research
Directions,” SN Computer Science, vol. 2, no.
160, 2021, doi: 10.1007/s42979-021-00592-x.

[24] A. C. Naik et al., “Enhancing IoT Security: A
Comprehensive Exploration of Privacy,
Security Measures, and Advanced Routing
Solutions,” Computer Networks, vol. 258, p.
111045, 2025.

[25] T. Azad, M. H. Newton, J. Trevathan, and A.
Sattar, “loT Edge Network Interoperability,”
Computer Communications, vol. 236, p.
108125, 2025.

[26] P. J. Ganesh, B. M. Sundaram, P. K.
Balachandran, and G. B. Mohammad,
“IntDEM: An Intelligent Deep Optimized
Energy Management System for IoT-Enabled
Smart Grid Applications,” Electrical
Engineering, vol. 107, no. 2, pp. 1925-1947,
2025.

[27] N. C. Luong et al., “Applications of Deep
Reinforcement Learning in Communications
and Sensing,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 4, pp. 3133-3174,
2019, doi: 10.1109/COMST.2019.2916583.

[28] Z. Zhou et al., “Edge Intelligence: Paving the
Last Mile of Artificial Intelligence With Edge
Computing,” Proceedings of the IEEE, vol. 107,

75

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

no. 8, pp. 1738-1762,
10.1109/JPROC.2019.2918951.

[29] S. Siami-Namini, N. Tavakoli, and A. Siami
Namin, “A Comparison of ARIMA and LSTM
in Forecasting Time Series,” International
Journal of Mathematical Sciences and
Computing, vol. 5, pp. 16-30, 2019, doi:
10.5815/ijmsc.2019.04.02.

[30] Y. Tian and L. Pan, “Predicting Short-Term
Traffic Flow by Long Short-Term Memory
Recurrent Neural Network,” Sensors, vol. 15,
pp- 17696-17711, 2015, doi:
10.3390/5150817696.

[31] K. Ullah et al., “Short-Term Load Forecasting:
A Comprehensive Review and Simulation
Study with CNN-LSTM Hybrids Approach,”
IEEE Access, 2024.

[32] A. Azzouni and G. Pujolle, “A Long Short-
Term Memory Recurrent Neural Network
Framework for Network Traffic Matrix
Prediction,” IEEE Transactions on Network and
Service Management, vol. 14, no. 4, pp. 1090—
1098, 2017, doi:
10.1109/TNSM.2017.2767318.

[33] F. Karim, S. Majumdar, H. Darabi, and S. Chen,
“LSTM Fully Convolutional Networks for Time
Series Classification,” IEEE Access, vol. 6, pp.
1662-1669, 2018, doi:
10.1109/ACCESS.2017.2779939.

[34] D. Xu et al., “A Novel TCN-Augmented CNN-
LSTM Architecture for Accurate Monthly
Runoff Forecasting,” Earth Science Informatics,
vol. 18, no. 3, p. 467, 2025.

[35] V. Gudivada, A. Apon, and J. Ding, “Data
Quality Considerations for Big Data and
Machine Learning: Going Beyond Data
Cleaning and Transformations,” International
Journal on Advances in Software, vol. 10, no. 1,
pp- 1-20, 2017.

[36] G. Zhao, W. Pang, B. Wang et al., “Intelligent
Traffic Flow Forecasting Using Optimized
GRU Model with Dempster—Shafer Fusion,”
IEEE Access, vol. 8, pp. 171608-171620, 2020,
doi: 10.1109/ACCESS.2020.3024620.

[37] H. Zeghida, M. Boulaiche, and R. Chikh et al.,
“XMID-MQTT: Explaining Machine Learning-
Based Intrusion Detection System for MQTT
Protocol in IoT Environment,” International
Journal of Information Security, vol. 24, p. 128,
2025, doi: 10.1007/s10207-025-01036-w.

[38] J. Et-Tousy and A. Zyane, “Machine Learning-
Driven QoS Optimization for IoT in OneM2M:
A Novel Approach for Traffic and Resource
Management,” in Proc. 12th Int. Conf. Future
Internet of Things and Cloud (FiCloud), 2025,
pp- 106-111, doi:
10.1109/FiCloud66139.2025.00023.

[39] K. Lima, T. D. Oyetoyan, R. Heldal, and W.
Hasselbring, “Evaluation of MQTT Bridge
Architectures in a Cross-Organizational
Context,” arXiv preprint arXiv:2501.14890,
2025.

[40] EMQX Team, “A Beginner’s Guide to MQTT
Performance Testing,” EMQX Blog, Nov. 6,
2023. [Online]. Available:
https://www.emgx.com/en/blog/a-beginner-

2019, doi:

https://www.emqx.com/en/blog/a-beginner-guide-to-mqtt-performance-testing

Muamar Almani Jasim /NTU Journal of Engineering and Technology (2025) 4 (4): 67-76

guide-to-mgqtt-performance-testing. [Accessed:
Oct. 26, 2025].

[41] Altoros Labs, “A Collection of 20+ MQTT
Broker Performance Benchmarks (2020—
2023),” Altoros Labs Blog, Aug. 2, 2023.
[Online]. Available:
https://www.altoroslabs.com/blog/a-collection-
of-mqtt-broker-performance-benchmarks-
2020-2023/.

[42] L. Reiher, B. Lampe, T. Woopen, R. van
Kempen, T. Beemelmanns, and L. Eckstein,
“Enabling Connectivity —for ~ Automated
Mobility: A Novel MQTT-Based Interface
Evaluated in a 5G Case Study on Edge—Cloud
Lidar Object Detection,” arXiv, Sep. 8, 2022.
[Online]. Available:
https://arxiv.org/abs/2209.03630. [Accessed:
Oct. 26, 2025].

76

https://www.emqx.com/en/blog/a-beginner-guide-to-mqtt-performance-testing

