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ABSTRACT

Electroretinography (ERG) is an essential tool for assessing retinal
function, with responses from photoreceptors, ganglion cells, and inner
layers. Clinical applications are often secondary to structural imaging,
though dysfunction may appear before anatomical changes. This review
compares three ERG types: full-field (ffERG), patterned (PERG), and
multifocal (mfERG), highlighting differences in response, waveform
components, and clinical uses. This review analyzes more than 60 studies
(2014-2025). Advanced analyses in the time, frequency, and time—
frequency domains demonstrated diagnostic accuracies between 85% and
97% for early detection of retinal dysfunctions such as glaucoma and
retinitis pigmentosa. Integrating ERG with Optical Coherence
Tomography (OCT) improved structure—function correlation by 15-25%.
The findings highlight that combining ERG with quantitative feature
extraction and OCT enhances early diagnosis and monitoring of retinal
diseases and supports standardized clinical applications.
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1. Introduction

Retinal and optic-nerve diseases are among the
leading causes of visual impairment and blindness
worldwide, making reliable and accurate diagnostic
tools crucial in clinical practice [1].
Electroretinography (ERG) and optical coherence
tomography (OCT) are key modalities in this field:
ERG provides a functional assessment of retinal
activity, while OCT delivers high-resolution
structural measurements of retinal tissues [2].
Recent studies have shown that combining ERG and
OCT yields a more comprehensive integrated
assessment [3,4]. Moreover, ERG signal analysis
has evolved from traditional time-domain
measurements (e.g., amplitude and latency) to more
advanced techniques in the frequency and time—
frequency domains, enabling extraction of more
sensitive and reliable biomarkers. This review first
outlines the physiological basis of the retina to
facilitate interpretation of ERG components, then
summarizes ERG types, discusses their integration
with  OCT, and evaluates signal-analysis
methodologies across time, frequency, and time—
frequency  domains,  emphasizing  clinical
applications and future challenges. Previous reviews
have focused on specific ERG modalities or on
individual diseases (e.g., inherited retinal disorders
[5], glaucoma [6], or OCT-based monitoring in dry
age-related macular degeneration (AMD) [7].
However, none systematically compared ERG
analytical domains (time, frequency, time—
frequency) or integrated them with OCT. Our review
fills that gap by providing a comprehensive
synthesis across ERG modalities, highlighting
complementary diagnostic insights and proposing
directions for future multimodal and Al-driven
research.

2. Physiological Basis of ERG

The retina is a light-sensitive layered structure
covering the back of the eye, as shown in Figure ).
It serves as an integral part of the visual system and
maintains close anatomical and physiological
connections with the brain[8] .When a light stimulus
is presented to it, the retina responds by converting
light into nerve signals. These responses reflect the
functional integrity of different retinal layers,
primarily the photoreceptors and bipolar cells. When
photons reach the retina, they are converted into
neural signals through a process called
phototransduction. In the dark, photoreceptors
maintain a depolarized state due to the influx of
cations through Cyclic Guanosine Monophosphate
(cGMP) gated channels, known as the “dark
current.” Upon exposure to light, activation of
rhodopsin triggers a G-protein cascade, resulting in
the closure of these channels and subsequent
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hyperpolarization of the photoreceptors. This
hyperpolarization is recorded as the a-wave, a
negative deflection in the ERG signal. Following
photoreceptor activation, ON bipolar cells respond
to decreased glutamate release by depolarizing,
generating a positive b-wave, representing inner
retinal activity. These two main components, the a-
wave and b-wave, form the basis for interpreting the
flash ERG [9].

Retinal Pigment Epithelium

q

Fig. 1. Drawing of a section through the human eye with
a schematic enlargement of the retina. From reference
[10].

3. ERG Modalities

Various ERG methods have been developed
to assess retinal function. ERG is a non-invasive
electrophysiological technique [11]. ERG reflects
the functions of photoreceptors and the inner nuclear
layers of the retina [YY,)¥,) ¢]. It is also considered
the first biopotential ever recorded in a human,
specifically by Dewar in 1877 [15]. Depending on
the type of light stimulus and the initial state of
adaptation to the background, a specific retinal
layer, a localized region, or the entire retina can be
stimulated to produce various types of responses,
such as patterned ERG (PERG), multifocal ERG
(mfERG) [16,17], full-field ERG (ffERG) [ A] focal
ERG (fERG), These methods are important tools for
early detection and diagnosis of a wide range of
retinal diseases, such as early diabetic retinopathy,
glaucoma, macular degeneration, and age-related
macular degeneration [19,20].

3.1  Multifocal ERG

The mfERG is one of the most widely used
procedures for measuring local retina function. It
generates a detailed topographic map of electrical
activity in various parts of the retina, particularly the
central retina, at an angle of around 45 to 60°. This
technique relies on stimulating specific regions of
the retina with a hexagonal stimulus, typically
presented as an array containing 61 or 103 elements
Figure Y. Each hexagon can take two states, light and
dark, i.e., on and off. It changes rapidly between
these two states, driven by a predetermined
“‘pseudorandom’’ binary sequence (m-sequence)
[16]. mfERG is recorded under light-adapted
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conditions and specifically targets the cone-driven
retina. The resulting waveform has three major
components: N1 (the initial negative component),
P1 (the positive component), and N2. N1 represents
the responses of cones and their bipolar cells,
whereas P1 and N2 are assumed to represent the
activity of bipolar cells and subsequent processes
within the retina [21,22]. mfERG analysis relies on
cross-correlation between the stimulus sequence and
the continuous electrical signal recorded at the
corneal surface, enabling the isolation of the
electrical response from each retinal location. This
results in a multilevel analysis known as kernels,
which include first-order kernels, which reflect the
direct response to the stimulus, and second-order
kernels, which reflect the superposition of the effects
of successive stimuli [23,24].mfERG was developed
to overcome this limitation [24,25]. mfERG is
utilized in clinical settings to detect or rule out
malfunction in certain parts of the retina, particularly
those involved with cones and bipolar cells. It is a
valuable tool for early diagnosis of localized retinal
diseases such as macular degeneration and cone-
dependent disorders [16]. Compared to ffERG,
mfERG has greater stimulation rates and offers
exact positional information regarding retinal
performance, which aids in the diagnosis of
localized pathological problems that conventional
radiography does not detect. Therefore, mfERG is a
vital tool in detecting early changes associated with
degenerative or localized diseases in the central
retina [26,27].

o

Fig. 2. depicts typical mfERG stimuli consisting of
hexagonal pieces that grow in size with eccentricity. The
stimulus array is composed of either 61 or 103 elements.

In standard mfERG recordings, the horizontal extent of
the stimulus array covers approximately 40° to 50° of the
visual field [16].

3.2 Pattern ERG

The PERG is a technique used to assess the
function of retinal ganglion cells (RGCs) and
photoreceptors in the central macula. Unlike whole-
mount ffERG, which stimulates the entire retina,
PERG focuses on the central area only and therefore
has a low amplitude response. PERG requires
recording iterations, sometimes over 100 times, to
improve the signal-to-noise ratio [Y%,Y+].PERG is
typically elicited using alternating visual patterns,
such as checkerboard or successive stripes [Y+],
where the light pattern is periodically reversed to

41

produce structured visual stimulation. PERG
recording requires precise visual fixation from the
patient. The stimulus field can be expanded from 15°
to 30° to assess the paracentral region if fixation is
not possible. This is a practical alternative to mfER
[17] .The transient PERG pattern is the most widely
used clinical standard and consists of three main
components: N35 (initial negative deviation), P50
(positive peak at 50 ms), and N95 (negative peak at
95 ms) [17]. As shown in Figure 3 . P50 is used as
an indicator of the integrity of photoreceptors in the
central macula and inner retina, i.e., it reflects the
function of the pre-neural macula, while N95 is
considered to be related to the function of ganglion
cells and the optic nerve and is significantly
influenced by the degree of visual contrast [17,29].
Steady-state PERG (SS-PERG) is produced when
high inversion frequencies (>10 inversions/s) are
used, and the resulting waveform is sinusoidal with
constant shape and amplitude, making it suitable for
frequency domain analysis. [35,36,37].Some studies
suggest that SS-PERG may be more sensitive for
early detection of optic nerve damage, such as in
glaucoma, than transient responses [33].
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Fig. 3. Pattern ERG waveforms. Pattern ERGs recorded
to 50 check widths presented in standard 15-degree and
30-degree fields. The PERG P50 peak times from the 30
and 15-degree fields are the same, but the P50 amplitude
is large [17].

3.3 The full-field ERG

The ffERG is a block potential that reflects the
overall electrical activity of the retina. ffERG is an
established clinical technique for assessing overall
retinal function [35,36]. It involves stimulating the
entire retina with a short-duration, homogeneous
flash of light, typically lasting less than 5
milliseconds, as defined by the International Society
for Clinical Electrophysiology of Vision (ISCEV)
[32]. Figure 4 shows six steps of the clinical ffERG
as part of a protocol widely accepted as an
international clinical protocol. Standard and defined
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by ISCEV [14,36] . Depending on the adaptation
conditions (scotopic or photopic) and flash intensity,
ffERG can selectively assess rod or cone system
function. Under dark-adapted (scotopic) conditions,
dim flashes (e.g., DA 0.01 cd-s/m?) primarily elicit
responses from rod bipolar cells, while brighter
flashes (DA 3.0 or DA 10.0) produce mixed rod-
cone responses [37,38,39]. In light-adapted
(photopic) conditions, the single-flash (LA 3.0
cd-s/m?) and 30 Hz flicker stimuli are used to assess
cone system function, with the latter being
particularly sensitive [40,41]. The typical ffERG
waveform consists mainly of two components: the
a-wave, a negative deflection representing
photoreceptor (rod and cone) hyperpolarization [37],
and the b-wave, a positive deflection generated
mainly by ON-bipolar cells, with additional
contributions from Miiller cells and other inner

Dark-adapted 0.01 ERG
(rod response)

Dark-adapted 3.0 ERG

peak time,

. ® I

b

|“" L =

Light-adapted 3.0 ERG
(cone response)

a

(combined rod-cone response)

Light-adapted 3.0 flicker

retinal neurons [36]. Additional components include
oscillatory potentials (OPs), believed to originate
from inner retinal feedback circuits involving
amacrine cells [38,39], and the photopic negative
response (PhNR), which reflects ganglion cell
function under photopic conditions [40] .The i-
wave, seen under photopic conditions following the
b-wave, is less understood and may involve off-
bipolar cell activity [38] .Clinically, ffERG is used
to detect and differentiate various inherited retinal
dystrophies, such as cone-rod or rod-cone
dystrophies, and can guide genetic diagnosis
[41,42]. However, a notable limitation of ffERG is
its inability to detect localized retinal dysfunction, as
the response reflects a mass signal from the entire
retina.

Dark-adapted 10.0 ERG Dark-adapted 3.0

oscillatory potentials

Fig. 4. diagram depicts the six recording conditions established by the ffERG ISCEV Standard. Bold arrowheads
mark the stimulus flashes, solid arrows indicate the a- and b-wave amplitudes, and dotted arrows demonstrate
the method for measuring time-to-peak (t, implicit time, or peak time).From reference [34].

To clarify the differences between the different
types of electroretinography in an organized
manner, the most important clinical and technical
characteristics of each type were summarized in
Table 1, while Figure © shows the waveforms and
visual stimuli characteristic of each.
Understanding the distinct physiological and
technical characteristics of each ERG modality
provides a foundation for integrating these signals
with structural imaging techniques such as OCT,
which enhances diagnostic interpretation through a
combined structure—function approach.
4. OCT-ERG Integration

OCT, particularly advanced forms such as
spectral-domain OCT (SD-OCT) and Optical
coherence tomography angiography (OCTA), are
essential tools for detecting structural and
microvascular changes in the retina and optic nerve
[51]. SD-OCT provides high-resolution cross-
sectional images that allow for accurate
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measurements ~ of  retinal  thickness  and
morphological changes, while OCTA enables non-
invasive imaging of microvasculature in the retina
and choroid [£¢]. These techniques are particularly
valuable in diseases such as diabetic retinopathy,
glaucoma, and even neuropsychiatric disorders like
schizophrenia [45]. simultaneous acquisition of
structural and functional metrics and illustrating the
structure—function relationship as shown in Figure 6.
.Recent studies have demonstrated that structural
parameters obtained from OCT, such as Retinal
Nerve Fiber Layer (RNFL) and Ganglion Cell-Inner
Plexiform Layer (GCIPL) thickness, show strong
correlations with ERG functional parameters,
including N95 and P50 amplitudes [46,47].For
example, reduced RNFL thickness is frequently
associated with a decrease in N95 amplitude in
PERG, indicating early retinal ganglion cell
dysfunction even before visual field defects appear
[54].



Table 1. Comparison of the main ERG variants in terms of purpose, stimulation, waveform components,
recording conditions, clinical applications, and limitations.

Feature ffERG PERG mfERG
Purpose Global retinal function | Central retina, RGCs Local retinal functlon
(macula + periphery)

. . . 61 Hexagon array
Stimulus Type | Flash of light Contrast-reversing checkerboard (pseudorandom pattern)
Waveform a-wave, b-wave, OPs,

Components PhNR N35, P50, N95 N1, P1,N2

Amplitude Large Low Mgderate (depends on
retinal area)

Area . . o o

. Entire retina Central 15-30 Central 45-60° regions
Stimulated
Recording Dark- and light- Requires fixation; repeated Light-adapted,
Conditions adapted averaging pseudorandom stimulation

Clinical Uses

Assessing overall
retinal function;
diagnosing widespread
retinal diseases such as
retinitis pigmentosa
and diabetic
retinopathy.

Early detection of optic nerve
diseases and glaucoma;
monitoring retinal ganglion cell
damage.

Diagnosing and monitoring
central retinal diseases such
as AMD and diabetic
retinopathy; evaluating
localized retinal areas.

Limitations

- Does not identify
specific areas of the
retina.

- Insensitive to early
detection.

Measures only retinal ganglion
cells.
- Sensitive to eye movement.

- Requires a special visual pattern.

Covers only a central area.

Fig. 5. Schematic waveforms of the three main types of ERG. (A) ffERG waveform with the a-wave and b-wave.
(B) PERG waveform with N35, P50, and N95. (C) mfERG waveform showing N1, P1, and N2. (D) Checkerboard
stimulus for PERG. (E) 61-wave hexagonal pattern for mfERG. (F) Matrix of 61 positional responses for mfERG

Similarly, localized reductions in mfERG response
density correspond to thinning in the outer retinal
layers detected by SD-OCT, suggesting a direct
structure—function relationship [59] as shown in
Table Y for a summary of key studies.This
combination method improves diagnostic accuracy,

[43].
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allows for earlier diagnosis of disease development,
and facilitates more precise monitoring and
personalized therapy options in retinal and optic
nerve disorders.
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Fig. 6. (a) Schematic for the integrated OCT+ERG system. (b) A photograph of the OCT+ERG imaging probe. This
method allows for simultaneous assessment of retinal structure (by OCT) and function (via ERG), demonstrating the

structure-function link in retinal and optic nerve disorders [48].

Table 2. summarizes recent studies that have used OCT in conjunction with several ERG modalities, their clinical uses, and
the reported benefits of this multimodal strategy.

Year

Method (OCT +

[Ref| Disease ERG) No. of Subjects Main Findings / Benefits
Coefficient of Variation (CV) phase in PERG
showed high sensitivity for detecting retinal
2015 Glaucoma SS-PERG + SD-OCT 24 glaucoma + 25 ganglion cell dysfunction before RNFL
[46] controls = )
thinning or standard automated perimetry
(SAP) defects.
Yoyt Functional changes mfERG preceded
[49] AMD mfERG + SD-OCT Not available structural changes (SD-OCT), enabling early
diagnosis and treatment.
vy 90 eyes (48 Demonstrated a clear structure—function
[50] Glaucoma SS-PERG + SD-OCT glaucoma, 42 relationship, improving understanding of
controls) glaucoma development.
YOVA Improved diagnostic accuracy by linking
[51] Par1.<1nson s mfERG + SD-OCT 58 patients + 30 retinal structural gnd fupctlonal ch?mg.es;
disease controls useful for early diagnosis and monitoring
progression.
AKAR Diabetic mfERG + SD-OCT + 44 diabetic + 18 Identified early vascular and retinal changes
[52] retinopathy OCTA controls before clinical signs of retinopathy appeared.
Yory Retinitis 1?8 iec};els gzo Strong correlation between OCT and ERG,
. SS-PERG + SD-OCT ypieal, useful for predicting visual acuity and
[47] pigmentosa paracentral, 24 . .
monitoring progression.
others)
T | Nomal-Tension | PERG+SDOCT+ | 109 eyes(a9 | [ERiat s e e ol
[53] Glaucoma(NTG) OCTA healthy, 60 NTG) insights
AR 72 glaucoma Detected retinal ganglion cell dysfunction
[54] Glaucoma PERG + SD-OCT patients before visual field defects.
Yoyy Schizophrenia 12 studies, 250 Re\/.eale(} stropg stmcture'ffunct'lon
[55] spectrum ffERG + SD-OCT atients correlations in retina, suggesting retina as a
disorders P biomarker for diagnosis and follow-up.
. . . 65 eyes (33 HF-N95 ratios correlated GCIPL thickness;
AR Preperimetric High-Frequency - reperimetric, 32 half-analysis improved sensitivity for earl
[56] glaucoma PERG + SD-OCT preperimetric, all-analysis improved senstiivity for earty
controls) diagnosis.
Y.«Yo s . PE.RG * Pattern . Allowed early detection of structural and
Pediatric optic Visual Evoked 42 patients + 42 . S )
[57] . functional changes in children; useful when
neuropathy Potential (PVEP) + controls . . L
SD-OCT the OCT imaging quality is limited.
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As summarized in Table 2, integrating OCT with

various ERG modalities has consistently
demonstrated improved diagnostic precision and
structure—function  correlation.  Studies across
glaucoma, diabetic retinopathy, AMD, and neuro-
ophthalmic disorders revealed that combining
functional and structural assessments enhances early
disease detection by 15-25% and provides valuable
insight into retinal ganglion and photoreceptor
integrity. This multimodal approach strengthens
clinical decision-making and supports more
personalized monitoring strategies compared with
standalone techniques.
While OCT integration bridges the gap between
structural and functional evaluations, advanced
analytical techniques are equally essential for
quantifying ERG signals. The following sections
present various signal processing methods applied to
ERG data, illustrating how each analytical domain
contributes to extracting meaningful diagnostic
information.

5. Analytical Domains (Time,

Frequency, Time-Frequency)

The ERG waveform can be studied in a variety of
domains, including time, frequency, and time-
frequency, to determine the signal's function. Figure
7 presents the block diagram depicts multiple studies
for ERG signals based on three categories and
consolidates the number of papers accessible in the
literature for each category.

ERG Analysis
. Time-Frequency
Frequency- Domain T Domain
Fourier
Transform (FT) . Wavelet Transform
| Amplitude (WT, CWT, DWT)
Power Spectral
Density (PSD)
. | e Short-Time Fourier
Linear Transform (STFT)
Prediction (LP)

Matching Pursuit
(MP)

Fig. 7. A block diagram based on multiple analyses that
shows ERG research.

5.1 Time-domain analysis

Because they are relatively easy to interpret,
time-domain features are widely used by clinicians,
extracting information and characteristic features
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directly from the signal itself rather than converting
it to another domain. This type of analysis focuses
primarily on two key parameters: amplitude, which
reflects the intensity of the electrical response, and
implicit time (latencies), which is the time interval
between the onset of a stimulus and the peak of each
wave. Amplitudes and implicit times are used to
determine the evaluation of retinal changes,
distinguish between responses of healthy and
unhealthy individuals, and monitor changes
resulting from medical or surgical treatment [58]. As
a result, they are among the most widely used
metrics in ERG research and are regularly used as
benchmarks for evaluating various signal processing
approaches. Time-domain features are clinically
important and easy to understand, but they are
susceptible to artifacts, which can make them less
accurate. Moreover, time-domain features have
lower computational complexity than frequency-
domain features, as they depend directly on the
signal amplitude and its temporal relation, whereas
frequency-domain features require transforming the
signal using methods such as the Fast Fourier
Transform (FFT)[59]. Consequently, various studies
recommend combining these features with those
from other domains, such as frequency or time—
frequency, to improve analytical reliability [59,60] .
Additionally, the FFT algorithm can be applied to
analyze the signal in the frequency domain, with the
possibility of reconstructing the original signal using
the inverse Fourier transform under certain
conditions [25]. Figure 8 represents a visualization
of the basic temporal parameters extracted from the
ERG signal, while Table 3 provides a compilation of
all time-domain investigations performed on
different ERG response.

Fig. 8. A typical ERG from a visually normal subject is
shown. In this figure, variables, including: a-wave
amplitude, b-wave amplitude, and PhNR. t1: a-wave
implicit time; t2: b-wave implicit time, t3: PANR implicit
time [24].
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Table 3. A compilation of all Time-domain investigations performed on all ERG responses.

Year Signal /Stimulation No. of Subjects Features Extracted Limitations
[Ref]
2014 mfERG (103 hexagons, 104 (60 AMD, 44 N1-P1 amplitude, P1 implicit mfERG & microperimetry not
[61] 200 cd/m?) controls) time, retinal sensitivity significantly correlated
AR Full-field photopic ERG 171 (151 diabetic, 20 | B-wave amplitude & peak time, | Single time-point, no long-
[62] (single-flash, 30 Hz) healthy) retinal thickness, macular term follow-up, partial control
edema group
AKRR PERG 63 (type 1 diabetic, PERG & Visual Evoked No healthy comparison, older
[63] 126 eyes) Potential(VEP) latencies and data, variable testing
amplitudes conditions
mfERG (103 hexagons, 40 (20 epiretinal P1 amplitude density, P1 Small sample, categorization
2017 75 Hz) membranes (ERM), implicit time accuracy not reported
[64] 20 healthy)
2017 PERG 24 Primary Open- P50/N95 amplitude & peak Small sample size
[65] Angle Glaucoma time
(POAG) (11
preperimetric, 13
early)
2018 Peripheral pattern ERG 11 healthy Peripheral ERG function Difficulty in stimulating the
[66] (PPERG) + conventional peripheral area accurately
PERG
YOIA SS-PERG 57 (29 localized, 10 Amplitudes, ratios, visual field Visual field & hemifield
[67] diffuse, 18 normal) sensitivity, RNFL thickness PERG (h-PERG) differences
not correlated; possible
fixation & age effects
ARAR ffERG + OCTA 523 eyes (366 a/b-wave, oscillatory potentials, | Peripheral changes not
[68] diabetic, 157 healthy) | 30-Hz flicker, vessel density detected; PERG/PhNR not
included
ARA R mfERG, PERG, PhNR, 48 participants (92 mfERG fovea P1, PERG N95 Small sample, need for
[69] SD-OCT eyes) amplitude/implicit time, PANR OCTA comparison
amplitude/implicit time
2021 ffERG 40 a/b-wave amplitude & peak, Small sample size limits
[70] Short-Time Fourier Transform generalizability
(STFT)/continuous Wavelet
Transform (CWT)/ discrete-
Wavelet Transform (DWT)
time-frequency features
Yevy ffERG (dark/light 60 (28 Retinitis a/b-wave implicit times, Short ERG signal, variable
[71] adapted) Pigmentosa (RP), 32 amplitudes, nonlinear features disease severity
healthy) (theta angle, density)
ARAA PERG + PhNR 32 patients PERG N95, PhNR amplitude, Inter-visit variability,
[72] OCT (peripapillary Retinal complex protocols
Nerve Fiber Layer (PRNFL),
[54] Ganglion Cell Complex (GCC),
Nerve Fiber Layer (NFL))
2023 PERG + OCT 150 participants (300 | P50/N95 latency & amplitude, Clinical variability in
[73] eyes) RNFL thickness glaucoma assessment
2024 PERG + Blue-Yellow 412 patients (2571 PERG amplitude, BY-VEP No SD-OCT, single
[74] Visual Evoked Potential eyes, 347 analyzed) peak time measurement, exploratory
(BY-VEP) tests
Y.Yo mfERG (61 hexagonal 96 (77 RP, 19 N1/P1/N2 amplitude & latency | Limited to Turkey, time-
[75] stimuli) healthy) domain only, further
validation needed
2025 mfERG + Generative NA P1 wave amplitude maps Overfitting solved by
[76] Adversarial Network preprocessing & GAN
(GAN)Transfer Learning
Y.Yo Extended Pattern 60 (20 normal, 20 PERGx amplitude & phase, No correlation with
[77] Electroretinography OHT, 20 Open-Angle | delta amplitude & phase RNFL/GCIPL, one eye per
(PERGx, SS-PERG) Glaucoma( OAG) angular dispersion participant
5.1.1 Comparison of studies based on time remains a fundamental and widely applied approach

approaches

Studies summarized in Table 3 collectively

indicate that time-domain analysis of ERG signals

for assessing retinal function. Most investigations
focused on measuring a- and b-wave amplitudes and
implicit times to detect early dysfunction in diseases
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such as glaucoma, diabetic retinopathy, and retinitis
pigmentosa. Results consistently showed that PERG
and mfERG provide sensitive indicators of early
ganglion and cone dysfunction, with diagnostic
accuracies often exceeding 90%. Recent studies
integrating machine learning algorithms, such as
ResNet50 and Naive Bayes, achieved classification
accuracies above 94%, confirming the potential of
Al-assisted ERG analysis as a clinical decision-
support tool. However, many studies reported
limitations related to small sample sizes and weak
correlations between functional and structural
measurements, emphasizing the need for broader
clinical validation. Frequency domain analysis.

5.2  Frequency domain analysis

Several studies have been performed to analyze
the ERG in the frequency domain. This type of
analysis uses a variety of techniques to extract
frequency components, including the Fourier
transform (FT) and the discrete Fourier transform
(DFT), as well as some limited methods like
empirical mode decomposition (EMD), power
spectral density (PSD), and spectrum estimation or
linear prediction (LP) [58,78,79,80,81]. Frequency
analysis offers more precise measurements of
amplitude and peak timings [82]. A compilation of
these investigations on different ERG responses is
presented in Table 4.

5.2.1  Fourier analysis

Fourier Analysis (FA) is a technique that only
operates in the frequency domain. It breaks down a
time-domain signal or a given time series into
frequency components that together reconstitute the
original signal[83]. The Fourier Transform allows
you to identify the magnitude or contribution of each
frequency in the original signal. In frequency-
domain analysis, the first step is to transform the
signal from the time domain to the frequency
domain using the following technique:

+00

X(f) = f x(t) -e”2mft gt €))

Where X (f) is the signal in the frequency domain
and x (t) is the signal in the time domain .The
original signal can be reconstructed, under specific
conditions, using the inverse Fourier transform.
Furthermore, discrete-time implementations of both
the forward and inverse Fourier transforms are
commonly employed. In practical applications, the
transformation in the discrete domain is typically

performed using the well-established FFT
algorithm.
5.2.2  Power spectral density

PSD is one of the fundamental tools in bio
signal analysis, which shows how a signal's energy
is divided across frequencies [84,85]. Unlike time-
domain analysis, which focuses on amplitude and
response time, PSD analysis provides accurate
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information about a signal's frequency content,
allowing for a better understanding of the underlying
physiological processes. PSD is used in ERG to
derive spectral features from a sample signal, with
the energy distribution across frequencies reflecting
the functions of various retinal layers [86]. PSD is
commonly determined by Fourier processing the

signal's autocorrelation sequence [87], which
follows the mathematical relationship:
+00
S = [ @ et dr @

Where r (7) represents the autocorrelation function,
and S (f) denotes the power spectral density [88].

5.2.3  Linear prediction

LP is a time series analysis technique widely
used in signal processing applications such as
modeling and feature extraction [89]. It is
considered a parametric spectral estimation method,
in contrast to non-parametric techniques like PSD or
the FT. LP is especially preferred when analyzing
ERG signals with a limited number of samples,
where traditional methods may not provide
sufficient information. When the signal duration is
long enough, the FT can be used to estimate the
number of poles in the system. One of the main
advantages of LP is its ability to accurately identify
the dominant frequencies in short-duration signals.
This allows for simultaneous detection of frequency
changes and efficient data compression [90].
5.2.4  Comparison of studies based on
frequency approaches

As outlined in Table 4, frequency-domain
analyses, using FT, PSD, and LP, provided more
precise  quantification of retinal responses,
particularly at specific frequency ranges between 6—
100 Hz. These studies revealed that reductions in
high-frequency components could serve as early
markers of cone dysfunction and glaucoma damage.
Despite the improved signal stability and enhanced
sensitivity of newer techniques such as LED-based
PERGzx, most research relied on limited datasets and
cross-sectional designs, which restrict longitudinal
interpretation of frequency alterations.
5.3  Time-frequency nalysis

Time-frequency analysis (TFA) is a technique
used to study the spectral changes of a signal over
time. Time-frequency analysis can easily distinguish
between signal components that may have the same
frequency range but occur at different time points,
making it a useful tool for analyzing non-stationary
biomedical signals that vary over time [96] .Wavelet
transform (WT) are typically applied in both forms
to increase the amount of information extracted and
improve results [97]. Indices derived from the
spectral entropy (power spectrum) and dominant
frequencies of the time-frequency waveform are
sometimes used to identify the ERG of affected
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Table 4. A compilation of all frequency-domain investigations performed on all ERG responses.

Year Signal /Stimulation No. of Subjects Feature Extraction Limitations

[Ref]

2015 Flickering & current 6 human subjects FFT (Main frequencies: 12.56 Hz, | Artifacts from electrode

[91] ERG 50.26 Hz) movement; filtered for

accurate interpretation

2017 PERGx vs. Pattern 57 (29 localized glaucoma, FA temporal adaptation Conventional Cathode Ray

[92] Electroretinography 10 diffuse glaucoma, 18 assessment Signal-to-Noise Ratio, | Tube monitors caused

for Glaucoma healthy controls) SNR) calculation of SS-PERG response delays; ignored
Analysis (PERGLA; amplitude and latency measured temporal adaptation, limited
Light-Emitting Diode via LED-based PERGx at 15.63 dynamic range for advanced
(LED)-based stimuli) Hz; response adaptation analyzed optic neuropathy cases

over ~2 min.

YVA Full-field sinusoidal 20 healthy controls, 20 eyes FFT: amplitude & phase of Small sample; cross-

[93] flicker 6-100 Hz with non-proliferative fundamental component; harmonic | sectional design limits
diabetic retinopathy without | analysis tracking progression; PhNR
diabetic retinopathy (NDR), & PERG neglected; weak
and 20 eyes with mild non- responses at 100 Hz reduce
proliferative diabetic assessment accuracy
retinopathy (mild NPDR).

Y4 ffERG (Light-adapted | 60 eyes (20 healthy, 20 Log Rmp3 & log S from a-wave A cross-sectional design

[94] single-flash & 30 Hz | NDR, 20 mild NPDR) (delayed Gaussian model); flicker | prevents tracking

flicker, short color ERG amplitudes from time- progression over time or
flashes <1 ms, 2.8—4.0 frequency analysis; OPs from 70— | inferring causality
log Td-s) 300 Hz filtering
2019 FERG + PERG 12 people (6 normal, 6 Fourier Series + Polynomial Very small sample size (6
[95] POAG stages [ & 1) Amplitude-Frequency normal, 6 POAG)
Characteristics (AFC)

patients[98]. Various transforms have been used to
extract features that describe changes in a signal
across both time and frequency. A summary of time-

5.3.1  Short-Time Fourier Transform

STFT is an essential technique for the time-
frequency analysis, which works by separating the
signal into tiny time windows and performing the
Fourier transform on each one independently. This
method FT allows for the observation of how the
frequency content of a signal changes over time
[98,99]. The resulting output is typically presented
as a two-dimensional representation, where the
horizontal axis corresponds to time, the vertical axis
to frequency, and the signal amplitude is encoded
using color gradients. The resolution of the STFT in
the frequency domain depends on the window
length: longer windows provide higher frequency
resolution but lower time resolution, while shorter
windows offer better time localization at the cost of
reduced frequency resolution. This inherent
compromise, known as the time-frequency trade-of,
is one of the main limitations of STFT [Y++], as it
prevents simultaneous optimization in both
domains. The choice and design of the window
function also significantly influence the analysis
outcome, as windows help reduce unwanted artifacts
such as the Gibbs phenomenon, which arises from
the abrupt truncation of the signal and leads to
artificial components in the frequency spectrum.
Proper windowing helps suppress these side lobes,
enhancing the accuracy of spectral interpretation
[100,101,102].
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frequency-based ERG investigations is presented in
Table 5.

[ee]

Xsrer@ = [ 2@ g0 ae 3)
Where g (t) repres_ents the window used, and t
represents the time offset.

5.3.2  Wavelet analysis (WA)

WT is a powerful and effective method and one
of the most widely used methods for time-frequency
analysis. It is particularly important when dealing
with non-stationary signals, such as biomedical
signals, whose frequencies vary over time [95,98].
There are two basic types of WT: CWT and DWT
[Y+¥s)+£]. WT is usually applied in both forms to
increase the amount of information extracted and
improve and achieve better results [97].CWT is a
powerful and flexible analytical tool. It is considered
a technique for examining non-stationary time series
data. Where it is used a variable-length analysis
window that adapts to frequency. This allows for
high resolution at low frequencies, while short
windows are used for high-frequency analysis,
providing a more accurate and time-varying
assessment. Unlike the STFT, which uses a fixed-
length analysis window, [106]. Furthermore, the
CWT does not rely exclusively on traditional
representations in the time and frequency domain; it
operates on a time scale that can be converted to a
time-frequency domain using a pseudo-frequency,
the center frequency of each waveform used in the
analysis.This  transform  offers  tremendous
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flexibility, as it does not require sinusoidal functions
and does not impose strict mathematical constraints
on the signals studied, unlike traditional Fourier
analysis. This versatility makes it applicable to a
wide variety of signal types. People think that CWT
is the best way to find small and fast changes in time,
and it works very well for looking at local features
in a signal.

The following formula defines the CWT, which
represents the correlation between the continuous-
time signal x (t) under analysis and a function known
as wavelets [107].

CW(a,b) = J-

1 [+ . *(t_b)dt

- | o (=
Where the function of parameters a and b is denoted
by CWT (a,b), y*(t) is the complex conjugate of the
analyzing mother wavelet y(t), and b specifies a
translation of the wavelet and shows the temporal
localization. The parameter a is the wavelet's
dilatation (scale) [107,108]. The energy-normalized

+ 00

X(E)Wqp " dt 4)

factor, or coefficient \/La requires that the wavelet's

energy be constant throughout a range of scale
values. Moreover, a wavelet function must meet the
following mathematical requirements to be
categorized as a fundamental acceptable wavelet
.[109,110]

The second type is the DWT, which has high
processing speed and accuracy, making it suitable
for signal classification and data compression
applications [109]. Therefore, time-domain analysis
of retinal function should be complemented by
DWT descriptors, especially in difficult diagnostic

cases [112].DWT can be implemented as a filter set
of high-pass and low-pass filters, along with up-
sampling and down-sampling operations. In the
DWT coefficient equation is given by the following
equation is given [113].

t—2/k
2J

DWT(j, k) = x(t) P ( ) dt (5

1 J-+oo

5.3.3  Matching pursuit

Matching Pursuit (MP) is an iterative technique
that offers effective time-frequency resolution
across all frequencies [114]. MP has more flexibility
than WA and STFT, since it adjusts the window
length based on the local features of the time series
[115]. Consequently, MP offers superior temporal
and frequency resolution and has been used for
diverse signals, including electroencephalography
(EEG) and electrocardiography (ECG) [115,116].
The implementation of MP to ERG signals remains
in its nascent phase of development. Utilizing an
iterative process, MP identifies the signal's
representation within a function dictionary, which
generally comprises symmetric functions, including
Gaussian-modulated sine functions, exemplified by
Gabor functions. Employing a time-frequency
dictionary of Gabor functions, MP adaptively
decomposes the one-dimensional signal into a
collection of wavelet atoms. The features of the
decomposition may vary depending on the selection
of time-frequency atoms, such as Gabor. These
waveforms are automatically selected to optimally
conform to the signal structures.

Table 5. A compilation of all-time-frequency feature investigations performed on all ERG responses.

Year Signal No. of Subjects Feature Extraction Limitations
[Ref] Stimulation
Focal Cone 108 (Early AMD implicit times of the a- and b-waves Not specified
ERG, 20° n=54, Healthy n=54) | (descending and ascending phases),
2014 amber LED, 5 amplitude (Amp), Gradients,
[19] Hz Frequency domain (5—45 Hz)
2015 Photopic ERG | 28 (Normal 18, IIH Time domain: a,b, PhNR; Frequency | Noise removal; CWT complex &
[24] 10) domain: DWT, Wavelet Energy; redundant — DWT used
Time-frequency: PANR
reconstruction
2016 Photopic ERG | 61 (Normal 40, DWT: Amp, time-to-peak (a,b), Weak signals, low SNR; band pass
[118] Patients 21) rise/fall filtering causes distortion; DWT
improves accuracy
2016 ffERG 1 Normal DWT, CWT, STFT: a,b, i waves, Low SNR leads to distortion;
[119] PNR, OPs CWT is affected by the cone of
influence
2017 Photopic ERG | 20 Normal DWT: PhNR features (Amp at 72 ms, | Difficult trough identification;
[120] Trough Amp, Energy 11 Hz, 60-120 | DWT complex; weak PhNR-B
ms) wave correlation
2017 ffERG 40 Normal FFT, DWT, CWT: Amp & peak time | Time domain limited; sensitive to
[121] (a,b), frequency& spectral features noise; subtle changes may be
missed
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2019 2F-mfERG 60 (Healthy 35, DWT: variance, energy, median, min, | Small sample; central retina only;
[122] POAG 25) max, Standard Deviation(SD), unbalanced age/sex; advanced
Interquartile Range glaucoma not included
2020 PERG 60 (Healthy 30, DWT: mean, SD, relative energy Small sample; subtle variations
[123] POAG 30) (detail & approximation L6-7); hard to assess clinically
wavelets: db4, db8, symS5, sym7,
coif5
2020 ffERG 34 (Normal 17, CWT: Amp & peak times (a,b, Small sample; single disease
[124] Central Retinal Vein | PhNR), dominant frequency f0—{3, CRVO; single analysis technique
Occlusion (CRVO) occurrence t0—t3
17)
AKAR SS-PERG 45 (Glaucoma 28, Amp & phase per packet, slope, Small sample; only right eye;
[125] Healthy 17) phase dispersion, grand-average confounders not considered
vector
2021 [70] | ffERG 40 Time domain: Amp & peak (a,b); Small sample; limits
Time-Frequency: STFT, CWT generalizability (e.g., obesity
(Mexican Hat), DWT effects)
Yaxy PERG 53 (Normal 29, DWT, Principal Component Analysis | Small sample; age/gender
[126] Major Depressive (PCA), Minimum Covariance differences; treatments not
Disorder (MDD) 24) | Determinant: Amp & implicit time evaluated separately
(P50,N95), wavelet features
2022 ffERG 425 (pediatric & CWT + machine learning (ML), such | Limited database; reliance on
[127] (photopic- adult) as Decision Tree algorithms Gaussian wave
scotopic, OPs)
2023 ffERG (Max, 323 patients, 1975 CWT: Ricker, Gaussian, Morlet Data unbalanced; resampling used
[128] Scotopic, signals (Pediatric)
Photopic)
2023 ffERG (Max, 351 (after balancing) | CWT: Shannon, Ricker, Morlet, Single device (Tomey EP-1000)
[129] Scotopic, Gaussian, Complex Gaussian limits generalizability; noise;
Photopic) protocols limited; retinal dystrophy
only
2024 ffERG (Max, 322 patients, 1975 Time: a,b Amp & implicit time; Freq: | ML limited to 4 features; manual
[130] Scotopic, signals FT; Time-Freq: Spectrogram & extraction bias; unbalanced data
Photopic) STFT (bmin,bmax,bmedian,bmean)
2024 ffERG 120 (after balancing) | 4 manually extracted features Small dataset; limited features
[131] (scotopic,
photopic)
Y.Yo mfERG (103 2 (Healthy 1, Time-Freq signatures, frequency Reduced accuracy at signal edges;
[132] hexagons) Congenital Stationary | energy, temporal indices, waveform mother wavelet choice affects
Night shape results; CWT more
Blindness(CSNB) 1) computationally intensive than
DWT
5.3.4  Comparison of studies based on time— and clinical decision support. Nevertheless,

frequency approaches

As summarized in Table 5, time—frequency
analysis of ERG signals has evolved into a
comprehensive framework that enhances -early
detection of retinal dysfunction. Studies between
2014 and 2025 progressively integrated temporal
and frequency information through methods such as
FFT, DWT, CWT, and STFT, achieving superior
characterization of a, b-, and PhNR components
compared with conventional time- or frequency-
only analyses. = Wavelet-based  techniques,
particularly DWT and CWT, demonstrated
improved sensitivity to subtle functional alterations

and reduced signal distortion, while recent
combinations with deep learning models (e.g.,
ResNet, DenseNet) achieved classification

accuracies exceeding 88%. These advancements
highlight the potential of hybrid analytical
approaches that combine ERG signal processing
with artificial intelligence (Al) for early diagnosis
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variations in protocols, small sample sizes, and the
computational complexity of CWT remain major
challenges for routine clinical application.
Collectively,  these  analytical  approaches
demonstrate the progressive evolution of ERG
signal  processing  from  basic  temporal
characterization  to  multi-domain  analyses
incorporating  spectral and  time—frequency
information. The discussion that follows critically
compares these methods and outlines their clinical
and research implications.

6. Comparative Analysis and Future

Prospects
A comparative evaluation of analytical domains
reveals clear distinctions in their diagnostic
performance and applicability. Time-domain
methods remain simple and clinically accessible,
providing direct indicators such as amplitude and
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implicit time that are easy to interpret but limited in
sensitivity to subtle functional alterations.
Frequency-domain techniques, while offering
higher precision through spectral decomposition, are
constrained by noise sensitivity and the need for
standardized acquisition protocols. In contrast,
time—frequency approaches, particularly wavelet-
based analyses, capture transient and localized
changes with superior accuracy, supporting the
detection of early neuronal or vascular dysfunctions.
From a practical standpoint, integrating time—
frequency features with OCT or Al-based classifiers
is recommended for future research, as this
combination enhances both diagnostic specificity
and automation potential. Clinically, adopting
hybrid analytical frameworks could improve early
screening protocols for glaucoma, diabetic
retinopathy, and hereditary retinal dystrophies,
facilitating more objective and quantitative
monitoring of disease progression.

7.  Conclusion

This review demonstrates that ERG signal
analysis has evolved from relying on traditional
time-domain properties, such as amplitude and
latency, to using more sophisticated techniques in
the frequency and time-frequency domains. In time-
domain analysis, studies have focused on basic
indicators of retinal function, but limited sample
sizes and small signal sizes have limited
generalizability. Frequency analysis using tools such
as FFT, PSD, and PERGx has allowed for more
accurate characterization of frequency components,
but variability in protocols and the difficulty of exploiting
high frequencies such as 50 Hz have been limitations. In
contrast, time-frequency analysis using wavelets (WT,
CWT, and DWT) has provided a better characterization of
dynamic changes in signals, but the computational
complexity and difficulty in selecting the optimal wavelet
remain practical challenges. Therefore, combining time-
frequency characteristics and electroretinography analysis
with advanced imaging techniques, such as optical OCT,
along with machine learning and artificial neural networks
for feature extraction, represents a promising direction
toward developing accurate and effective diagnostic tools
capable of early detection of retinal diseases and better
monitoring their progression.
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