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Electroretinography (ERG) is an essential tool for assessing retinal 

function, with responses from photoreceptors, ganglion cells, and inner 

layers. Clinical applications are often secondary to structural imaging, 

though dysfunction may appear before anatomical changes. This review 

compares three ERG types: full-field (ffERG), patterned (PERG), and 

multifocal (mfERG), highlighting differences in response, waveform 

components, and clinical uses. This review analyzes more than 60 studies 

(2014–2025). Advanced analyses in the time, frequency, and time–

frequency domains demonstrated diagnostic accuracies between 85% and 

97% for early detection of retinal dysfunctions such as glaucoma and 

retinitis pigmentosa. Integrating ERG with Optical Coherence 

Tomography (OCT) improved structure–function correlation by 15–25%. 

The findings highlight that combining ERG with quantitative feature 

extraction and OCT enhances early diagnosis and monitoring of retinal 

diseases and supports standardized clinical applications. 
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 Introduction 
Retinal and optic-nerve diseases are among the 

leading causes of visual impairment and blindness 

worldwide, making reliable and accurate diagnostic 

tools crucial in clinical practice [1]. 

Electroretinography (ERG) and optical coherence 

tomography (OCT) are key modalities in this field: 

ERG provides a functional assessment of retinal 

activity, while OCT delivers high-resolution 

structural measurements of retinal tissues [2]. 

Recent studies have shown that combining ERG and 

OCT yields a more comprehensive integrated 

assessment  [3,4]. Moreover, ERG signal analysis 

has evolved from traditional time-domain 

measurements (e.g., amplitude and latency) to more 

advanced techniques in the frequency and time–

frequency domains, enabling extraction of more 

sensitive and reliable biomarkers. This review first 

outlines the physiological basis of the retina to 

facilitate interpretation of ERG components, then 

summarizes ERG types, discusses their integration 

with OCT, and evaluates signal-analysis 

methodologies across time, frequency, and time–

frequency domains, emphasizing clinical 

applications and future challenges. Previous reviews 

have focused on specific ERG modalities or on 

individual diseases (e.g., inherited retinal disorders  

[5], glaucoma  [6], or OCT-based monitoring in dry 

age-related macular degeneration (AMD) [7]. 

However, none systematically compared ERG 

analytical domains (time, frequency, time–

frequency) or integrated them with OCT. Our review 

fills that gap by providing a comprehensive 

synthesis across ERG modalities, highlighting 

complementary diagnostic insights and proposing 

directions for future multimodal and AI-driven 

research. 

 

 Physiological Basis of ERG 
      The retina is a light-sensitive layered structure 

covering the back of the eye, as shown in Figure 1. 

It serves as an integral part of the visual system and 

maintains close anatomical and physiological 

connections with the brain[8]  .  When a light stimulus 

is presented to it, the retina responds by converting 

light into nerve signals. These responses reflect the 

functional integrity of different retinal layers, 

primarily the photoreceptors and bipolar cells. When 

photons reach the retina, they are converted into 

neural signals through a process called 

phototransduction. In the dark, photoreceptors 

maintain a depolarized state due to the influx of 

cations through Cyclic Guanosine Monophosphate 

(cGMP) gated channels, known as the “dark 

current.” Upon exposure to light, activation of 

rhodopsin triggers a G-protein cascade, resulting in 

the closure of these channels and subsequent 

hyperpolarization of the photoreceptors. This 

hyperpolarization is recorded as the a-wave, a 

negative deflection in the ERG signal. Following 

photoreceptor activation, ON bipolar cells respond 

to decreased glutamate release by depolarizing, 

generating a positive b-wave, representing inner 

retinal activity. These two main components, the a-

wave and b-wave, form the basis for interpreting the 

flash ERG [9]. 

 
Fig. 1. Drawing of a section through the human eye with 

a schematic enlargement of the retina. From reference 

[10]. 

 

 

 ERG Modalities 
          Various ERG methods have been developed 

to assess retinal function. ERG is a non-invasive 

electrophysiological technique [11]. ERG reflects 

the functions of photoreceptors and the inner nuclear 

layers of the retina [12,13,14 ] . It is also considered 

the first biopotential ever recorded in a human, 

specifically by Dewar in 1877 [15]. Depending on 

the type of light stimulus and the initial state of 

adaptation to the background, a specific retinal 

layer, a localized region, or the entire retina can be 

stimulated to produce various types of responses, 

such as patterned ERG (PERG), multifocal ERG 

(mfERG) [16,17], full-field ERG (ffERG) [18]  focal 

ERG (fERG), These methods are important tools for 

early detection and diagnosis of a wide range of 

retinal diseases, such as early diabetic retinopathy, 

glaucoma, macular degeneration, and age-related 

macular degeneration  [19,20]. 

 

3.1 Multifocal ERG  

       The mfERG is one of the most widely used 

procedures for measuring local retina function.  It 

generates a detailed topographic map of electrical 

activity in various parts of the retina, particularly the 

central retina, at an angle of around 45 to 60°. This 

technique relies on stimulating specific regions of 

the retina with a hexagonal stimulus, typically 

presented as an array containing 61 or 103 elements 

Figure 2. Each hexagon can take two states, light and 

dark, i.e., on and off. It changes rapidly between 

these two states, driven by a predetermined 

‘‘pseudorandom’’ binary sequence (m-sequence) 

[16]. mfERG is recorded under light-adapted 
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conditions and specifically targets the cone-driven 

retina. The resulting waveform has three major 

components: N1 (the initial negative component), 

P1 (the positive component), and N2.  N1 represents 

the responses of cones and their bipolar cells, 

whereas P1 and N2 are assumed to represent the 

activity of bipolar cells and subsequent processes 

within the retina [21,22]. mfERG analysis relies on 

cross-correlation between the stimulus sequence and 

the continuous electrical signal recorded at the 

corneal surface, enabling the isolation of the 

electrical response from each retinal location. This 

results in a multilevel analysis known as kernels, 

which include first-order kernels, which reflect the 

direct response to the stimulus, and second-order 

kernels, which reflect the superposition of the effects 

of successive stimuli [23,24].mfERG was developed 

to overcome this limitation [24,25]. mfERG is 

utilized in clinical settings to detect or rule out 

malfunction in certain parts of the retina, particularly 

those involved with cones and bipolar cells. It is a 

valuable tool for early diagnosis of localized retinal 

diseases such as macular degeneration and cone-

dependent disorders [16]. Compared to ffERG, 

mfERG has greater stimulation rates and offers 

exact positional information regarding retinal 

performance, which aids in the diagnosis of 

localized pathological problems that conventional 

radiography does not detect. Therefore, mfERG is a 

vital tool in detecting early changes associated with 

degenerative or localized diseases in the central 

retina [26,27]. 
 

 
 

Fig. 2. depicts typical mfERG stimuli consisting of 

hexagonal pieces that grow in size with eccentricity. The 

stimulus array is composed of either 61  or 103 elements. 

In standard mfERG recordings, the horizontal extent of 

the stimulus array covers approximately 40° to 50° of the 

visual field [16]. 

 

3.2 Pattern ERG  

      The PERG is a technique used to assess the 

function of retinal ganglion cells (RGCs) and 

photoreceptors in the central macula. Unlike whole-

mount ffERG, which stimulates the entire retina, 

PERG focuses on the central area only and therefore 

has a low amplitude response. PERG requires 

recording iterations, sometimes over 100 times, to 

improve the signal-to-noise ratio [29,30] .PERG is 

typically elicited using alternating visual patterns, 

such as checkerboard or successive stripes [30] , 

where the light pattern is periodically reversed to 

produce structured visual stimulation. PERG 

recording requires precise visual fixation from the 

patient. The stimulus field can be expanded from 15° 

to 30° to assess the paracentral region if fixation is 

not possible. This is a practical alternative to mfER   

[17] .The transient PERG pattern is the most widely 

used clinical standard and consists of three main 

components: N35 (initial negative deviation), P50 

(positive peak at 50 ms), and N95 (negative peak at 

95 ms) [17]. As shown in Figure 3  . P50 is used as 

an indicator of the integrity of photoreceptors in the 

central macula and inner retina, i.e., it reflects the 

function of the pre-neural macula, while N95 is 

considered to be related to the function of ganglion 

cells and the optic nerve and is significantly 

influenced by the degree of visual contrast [17,29]. 

Steady-state PERG (SS-PERG) is produced when 

high inversion frequencies (>10 inversions/s) are 

used, and the resulting waveform is sinusoidal with 

constant shape and amplitude, making it suitable for 

frequency domain analysis. [35,36,37].Some studies 

suggest that SS-PERG may be more sensitive for 

early detection of optic nerve damage, such as in 

glaucoma, than transient responses [33].  

 

  
Fig. 3. Pattern ERG waveforms. Pattern ERGs recorded 

to 50’ check widths presented in standard 15-degree and 

30-degree fields. The PERG P50 peak times from the 30  

and 15-degree fields are the same, but the P50 amplitude 

is large [17] . 

 

3.3 The full-field  ERG  

        The ffERG is a block potential that reflects the 

overall electrical activity of the retina. ffERG is an 

established clinical technique for assessing overall 

retinal function [35,36]. It involves stimulating the 

entire retina with a short-duration, homogeneous 

flash of light, typically lasting less than 5 

milliseconds, as defined by the International Society 

for Clinical Electrophysiology of Vision (ISCEV) 

[32]. Figure 4 shows six steps of the clinical ffERG 

as part of a protocol widely accepted  as an 

international clinical protocol. Standard and defined 
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by ISCEV [14,36] . Depending on the adaptation 

conditions (scotopic or photopic) and flash intensity, 

ffERG can selectively assess rod or cone system 

function. Under dark-adapted (scotopic) conditions, 

dim flashes (e.g., DA 0.01 cd·s/m²) primarily elicit 

responses from rod bipolar cells, while brighter 

flashes (DA 3.0 or DA 10.0) produce mixed rod-

cone responses [37,38,39]. In light-adapted 

(photopic) conditions, the single-flash (LA 3.0 

cd·s/m²) and 30 Hz flicker stimuli are used to assess 

cone system function, with the latter being 

particularly sensitive [40,41]. The typical ffERG 

waveform consists mainly of two components: the 

a-wave, a negative deflection representing 

photoreceptor (rod and cone( hyperpolarization [37], 

and the b-wave, a positive deflection generated 

mainly by ON-bipolar cells, with additional 

contributions from Müller cells and other inner 

retinal neurons [36]. Additional components include 

oscillatory potentials (OPs), believed to originate 

from inner retinal feedback circuits involving 

amacrine cells [38,39], and the photopic negative 

response (PhNR), which reflects ganglion cell 

function under photopic conditions [40] .  The i-

wave, seen under photopic conditions following the 

b-wave, is less understood and may involve off-

bipolar cell activity [38] .  Clinically, ffERG is used 

to detect and differentiate various inherited retinal 

dystrophies, such as cone-rod or rod-cone 

dystrophies, and can guide genetic diagnosis 

[41,42]. However, a notable limitation of ffERG is 

its inability to detect localized retinal dysfunction, as 

the response reflects a mass signal from the entire 

retina. 

 

 

 

Fig. 4. diagram depicts the six recording conditions established by the ffERG ISCEV Standard. Bold arrowheads 

mark the stimulus flashes, solid arrows indicate the a- and b-wave amplitudes, and dotted arrows demonstrate 

the method for measuring time-to-peak (t, implicit time, or peak time).From reference [34]. 

 

 

To clarify the differences between the different 

types of electroretinography in an organized 

manner, the most important clinical and technical 

characteristics of each type were summarized in 

Table 1, while Figure 5 shows the waveforms and 

visual stimuli characteristic of each. 

Understanding the distinct physiological and 

technical characteristics of each ERG modality 

provides a foundation for integrating these signals 

with structural imaging techniques such as OCT, 

which enhances diagnostic interpretation through a 

combined structure–function approach. 

 OCT–ERG Integration 
       OCT, particularly advanced forms such as 

spectral-domain OCT (SD-OCT) and Optical 

coherence tomography angiography (OCTA), are 

essential tools for detecting structural and 

microvascular changes in the retina and optic nerve 

[51]. SD-OCT provides high-resolution cross-

sectional images that allow for accurate 

measurements of retinal thickness and 

morphological changes, while OCTA enables non-

invasive imaging of microvasculature in the retina 

and choroid  [44] . These techniques are particularly 

valuable in diseases such as diabetic retinopathy, 

glaucoma, and even neuropsychiatric disorders like 

schizophrenia [45]. simultaneous acquisition of 

structural and functional metrics and illustrating the 

structure–function relationship as shown in Figure 6. 

.Recent studies have demonstrated that structural 

parameters obtained from OCT, such as Retinal 

Nerve Fiber Layer (RNFL) and Ganglion Cell–Inner 

Plexiform Layer (GCIPL) thickness, show strong 

correlations with ERG functional parameters, 

including N95 and P50 amplitudes [46,47].For 

example, reduced RNFL thickness is frequently 

associated with a decrease in N95 amplitude in 

PERG, indicating early retinal ganglion cell 

dysfunction even before visual field defects appear 

[54]. 
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Table 1. Comparison of the main ERG variants in terms of purpose, stimulation, waveform components, 

recording conditions, clinical applications, and limitations. 

 

Feature ffERG PERG mfERG 

Purpose Global retinal function Central retina, RGCs 
Local retinal function 

(macula ± periphery) 

Stimulus Type Flash of light Contrast-reversing checkerboard 
61 Hexagon array 

(pseudorandom pattern) 

Waveform 

Components 

a-wave, b-wave, OPs, 

PhNR 
N35, P50, N95 N1, P1, N2 

Amplitude Large Low 
Moderate (depends on 

retinal area) 

Area 

Stimulated 
Entire retina Central 15–30° Central 45–60° regions 

Recording 

Conditions 

Dark- and light-

adapted 

Requires fixation; repeated 

averaging 

Light-adapted, 

pseudorandom stimulation 

Clinical Uses 

Assessing overall 

retinal function; 

diagnosing widespread 

retinal diseases such as 

retinitis pigmentosa 

and diabetic 

retinopathy. 

Early detection of optic nerve 

diseases and glaucoma; 

monitoring retinal ganglion cell 

damage. 

Diagnosing and monitoring 

central retinal diseases such 

as AMD and diabetic 

retinopathy; evaluating 

localized retinal areas. 

Limitations 

- Does not identify 

specific areas of the 

retina. 

- Insensitive to early 

detection. 

Measures only retinal ganglion 

cells. 

- Sensitive to eye movement. 

- Requires a special visual pattern. 

Covers only a central area. 

Fig. 5. Schematic waveforms of the three main types of ERG. (A) ffERG waveform with the a-wave and b-wave. 

(B) PERG waveform with N35, P50, and N95. (C) mfERG waveform showing N1, P1, and N2. (D) Checkerboard 

stimulus for PERG. (E) 61-wave hexagonal pattern for mfERG. (F) Matrix of 61 positional responses for mfERG 

[43]. 

 

Similarly, localized reductions in mfERG response 

density correspond to thinning in the outer retinal 

layers detected by SD-OCT, suggesting a direct 

structure–function relationship [59] as shown in 

Table 2 for a summary of key studies.This 

combination method improves diagnostic accuracy, 

allows for earlier diagnosis of disease development, 

and facilitates more precise monitoring and 

personalized therapy options in retinal and optic 

nerve disorders.     
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                              (a)                                                                                              (b) 

 

Fig. 6. (a) Schematic for the integrated OCT+ERG system.  (b) A photograph of the OCT+ERG imaging probe.  This 

method allows for simultaneous assessment of retinal structure (by OCT) and function (via ERG), demonstrating the 

structure-function link in retinal and optic nerve disorders [48]. 

 

Table 2. summarizes recent studies that have used OCT in conjunction with several ERG modalities, their clinical uses, and 

the reported benefits of this multimodal strategy. 

Year   

[Ref] 
Disease 

Method (OCT + 

ERG) 
No. of Subjects Main Findings / Benefits 

2015 

[46] 
Glaucoma SS-PERG + SD-OCT 

24 glaucoma + 25 

controls 

Coefficient of Variation (CV) phase in PERG 

showed high sensitivity for detecting retinal 

ganglion cell dysfunction before  RNFL 

thinning or standard automated perimetry 

(SAP) defects. 

2016 

[49] 
AMD mfERG + SD-OCT Not available 

Functional changes mfERG preceded 

structural changes (SD-OCT), enabling early 

diagnosis and treatment. 

2017 

[50] 
Glaucoma SS-PERG + SD-OCT 

90 eyes (48 

glaucoma, 42 

controls) 

Demonstrated a clear structure–function 

relationship, improving understanding of 

glaucoma development. 

2018 

[51] 

 

Parkinson’s 

disease 
mfERG + SD-OCT 

58 patients + 30 

controls 

Improved diagnostic accuracy by linking 

retinal structural and functional changes; 

useful for early diagnosis and monitoring 

progression. 

2020 

[52] 

Diabetic 

retinopathy 

mfERG + SD-OCT + 

OCTA 

44 diabetic + 18 

controls 

Identified early vascular and retinal changes 

before clinical signs of retinopathy appeared. 

2021 

[47] 

Retinitis 

pigmentosa 
SS-PERG + SD-OCT 

188 eyes (90 

typical, 74 

paracentral, 24 

others) 

Strong correlation between OCT and ERG, 

useful for predicting visual acuity and 

monitoring progression. 

2021 

[53] 

Normal-Tension 

Glaucoma)NTG ( 

PERG + SD-OCT + 

OCTA 

109 eyes (49 

healthy, 60 NTG) 

Early detection of ganglion cell dysfunction; 

OCTA added microvascular and structural 

insights. 

2021 

[54] 
Glaucoma PERG + SD-OCT 

72 glaucoma 

patients 

Detected retinal ganglion cell dysfunction 

before visual field defects. 

2023 

[55] 

Schizophrenia 

spectrum 

disorders 

ffERG + SD-OCT 
12 studies, 250 

patients 

Revealed strong structure–function 

correlations in retina, suggesting retina as a 

biomarker for diagnosis and follow-up. 

2024 

[56] 

Preperimetric 

glaucoma 

High-Frequency -

PERG + SD-OCT 

65 eyes (33 

preperimetric, 32 

controls) 

HF-N95 ratios correlated GCIPL thickness; 

half-analysis improved sensitivity for early 

diagnosis. 

2025 

[57] 

 

Pediatric optic 

neuropathy 

PERG + Pattern 

Visual Evoked 

Potential (PVEP) + 

SD-OCT 

42 patients + 42 

controls 

Allowed early detection of structural and 

functional changes in children; useful when 

the OCT imaging quality is limited. 
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     As summarized in Table 2, integrating OCT with 

various ERG modalities has consistently 

demonstrated improved diagnostic precision and 

structure–function correlation. Studies across 

glaucoma, diabetic retinopathy, AMD, and neuro-

ophthalmic disorders revealed that combining 

functional and structural assessments enhances early 

disease detection by 15–25% and provides valuable 

insight into retinal ganglion and photoreceptor 

integrity. This multimodal approach strengthens 

clinical decision-making and supports more 

personalized monitoring strategies compared with 

standalone techniques. 

While OCT integration bridges the gap between 

structural and functional evaluations, advanced 

analytical techniques are equally essential for 

quantifying ERG signals. The following sections 

present various signal processing methods applied to 

ERG data, illustrating how each analytical domain 

contributes to extracting meaningful diagnostic 

information. 

 

 Analytical Domains (Time, 

Frequency, Time–Frequency) 
     The ERG waveform can be studied in a variety of 

domains, including time, frequency, and time-

frequency, to determine the signal's function. Figure 

7 presents the block diagram depicts multiple studies 

for ERG signals based on three categories and 

consolidates the number of papers accessible in the 

literature for each category.  

 

 
Fig. 7. A block diagram based on multiple analyses that 

shows ERG research. 

 

5.1 Time-domain analysis  

     Because they are relatively easy to interpret, 

time-domain features are widely used by clinicians, 

extracting information and characteristic features 

directly from the signal itself rather than converting 

it to another domain. This type of analysis focuses 

primarily on two key parameters: amplitude, which 

reflects the intensity of the electrical response, and 

implicit time (latencies), which is the time interval 

between the onset of a stimulus and the peak of each 

wave. Amplitudes and implicit times are used to 

determine the evaluation of retinal changes, 

distinguish between responses of healthy and 

unhealthy individuals, and monitor changes 

resulting from medical or surgical treatment  [58]. As 

a result, they are among the most widely used 

metrics in ERG research and are regularly used as 

benchmarks for evaluating various signal processing 

approaches. Time-domain features are clinically 

important and easy to understand, but they are 

susceptible to artifacts, which can make them less 

accurate. Moreover, time-domain features have 

lower computational complexity than frequency-

domain features, as they depend directly on the 

signal amplitude and its temporal relation, whereas 

frequency-domain features require transforming the 

signal using methods such as the Fast Fourier 

Transform (FFT)[59]. Consequently, various studies 

recommend combining these features with those 

from other domains, such as frequency or time–

frequency, to improve analytical reliability [59,60] . 

Additionally, the FFT algorithm can be applied to 

analyze the signal in the frequency domain, with the 

possibility of reconstructing the original signal using   

the inverse Fourier transform under certain 

conditions [25]. Figure 8 represents a visualization 

of the basic temporal parameters extracted from the 

ERG signal, while Table 3 provides a compilation of 

all time-domain investigations performed on 

different ERG response. 

 
Fig. 8. A typical ERG from a visually normal subject is 

shown. In this figure, variables, including: a-wave 

amplitude, b-wave amplitude, and PhNR. t1: a-wave 

implicit time; t2: b-wave implicit time, t3: PhNR implicit 

time [24] .
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Table 3. A compilation of all Time-domain investigations performed on all ERG responses. 

Year   

[Ref] 

Signal  /Stimulation No. of Subjects Features Extracted Limitations 

2014 

[61]  

mfERG (103 hexagons, 

200 cd/m²) 

104 (60 AMD, 44 

controls) 

N1-P1 amplitude, P1 implicit 

time, retinal sensitivity 

mfERG & microperimetry not 

significantly correlated 

2015 

[62] 

Full-field photopic ERG 

(single-flash, 30 Hz) 

171 (151 diabetic, 20 

healthy) 

B-wave amplitude & peak time, 

retinal thickness, macular 

edema 

Single time-point, no long-

term follow-up, partial control 

group 

2016 

[63] 

PERG 63 (type 1 diabetic, 

126 eyes) 

PERG & Visual Evoked 

Potential(VEP) latencies and 

amplitudes 

No healthy comparison, older 

data, variable testing 

conditions 

2017 

[64] 

mfERG (103 hexagons, 

75 Hz) 
40 (20 epiretinal 

membranes (ERM), 

20 healthy) 

P1 amplitude density, P1 

implicit time 

Small sample, categorization 

accuracy not reported 

2017 

[65] 

PERG 24  Primary Open-

Angle Glaucoma 

)POAG( (11 

preperimetric, 13 

early) 

P50/N95 amplitude & peak 

time 

Small sample size 

2018 

[66] 

Peripheral pattern ERG 

(PPERG) + conventional 

PERG 

11 healthy Peripheral ERG function Difficulty in stimulating the 

peripheral area accurately 

2018 

[67] 

SS-PERG 57 (29 localized, 10 

diffuse, 18 normal) 

Amplitudes, ratios, visual field 

sensitivity, RNFL thickness 

Visual field & hemifield 

PERG (h-PERG) differences 

not correlated; possible 

fixation & age effects 

2020 

[68] 

ffERG + OCTA 523 eyes (366 

diabetic, 157 healthy) 

a/b-wave, oscillatory potentials, 

30-Hz flicker, vessel density 

Peripheral changes not 

detected; PERG/PhNR not 

included 

2020 

[69] 

mfERG, PERG, PhNR, 

SD-OCT 

48 participants (92 

eyes) 

mfERG fovea P1, PERG N95 

amplitude/implicit time, PhNR 

amplitude/implicit time 

Small sample, need for 

OCTA comparison 

2021 

[70] 

ffERG 40 a/b-wave amplitude & peak, 

Short-Time Fourier Transform 

)STFT(/continuous  Wavelet 

Transform (CWT)/ discrete- 

Wavelet Transform (DWT) 

time-frequency features 

Small sample size limits 

generalizability 

2022 

[71] 

ffERG (dark/light 

adapted) 
60 (28 Retinitis 

Pigmentosa )RP(, 32 

healthy) 

a/b-wave implicit times, 

amplitudes, nonlinear features 

(theta angle, density) 

Short ERG signal, variable 

disease severity 

2022 

[72] 

 

[54] 

PERG + PhNR 32  patients PERG N95, PhNR amplitude, 

OCT (peripapillary Retinal 

Nerve Fiber Layer (PRNFL), 

Ganglion Cell Complex (GCC), 

Nerve Fiber Layer (NFL)) 

Inter-visit variability, 

complex protocols 

2023 

[73] 

PERG + OCT 150 participants (300 

eyes) 

P50/N95 latency & amplitude, 

RNFL thickness 

Clinical variability in 

glaucoma assessment 

2024 

[74] 

PERG + Blue-Yellow 

Visual Evoked Potential 

)BY-VEP (_ 

412 patients (2571 

eyes, 347 analyzed) 

PERG amplitude, BY-VEP 

peak time 

No SD-OCT, single 

measurement, exploratory 

tests 

2025 

[75] 

mfERG (61 hexagonal 

stimuli) 

96 (77 RP, 19 

healthy) 

N1/P1/N2 amplitude & latency Limited to Turkey, time-

domain only, further 

validation needed 

2025 

[76] 

mfERG + Generative 

Adversarial Network 

)GAN(Transfer Learning 

NA P1 wave amplitude maps Overfitting solved by 

preprocessing & GAN 

2025 

[77] 
Extended Pattern 

Electroretinography 

(PERGx, SS-PERG) 

60 (20 normal, 20 

OHT, 20 Open-Angle 

Glaucoma  ) OAG) 

PERGx amplitude & phase, 

delta amplitude & phase 

angular dispersion 

No correlation with 

RNFL/GCIPL, one eye per 

participant 

5.1.1 Comparison of studies based on time 

approaches 

          Studies summarized in Table 3 collectively 

indicate that time-domain analysis of ERG signals 

remains a fundamental and widely applied approach 

for assessing retinal function. Most investigations 

focused on measuring a- and b-wave amplitudes and 

implicit times to detect early dysfunction in diseases 
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such as glaucoma, diabetic retinopathy, and retinitis 

pigmentosa. Results consistently showed that PERG 

and mfERG provide sensitive indicators of early 

ganglion and cone dysfunction, with diagnostic 

accuracies often exceeding 90%. Recent studies 

integrating machine learning algorithms, such as 

ResNet50 and Naive Bayes, achieved classification 

accuracies above 94%, confirming the potential of 

AI-assisted ERG analysis as a clinical decision-

support tool. However, many studies reported 

limitations related to small sample sizes and weak 

correlations between functional and structural 

measurements, emphasizing the need for broader 

clinical validation. Frequency domain analysis. 

 

5.2 Frequency domain analysis  

       Several studies have been performed to analyze 

the ERG in the frequency domain.  This type of 

analysis uses a variety of techniques to extract 

frequency components, including the Fourier 

transform (FT) and the discrete Fourier transform 

(DFT), as well as some limited methods like 

empirical mode decomposition (EMD), power 

spectral density (PSD), and spectrum estimation or 

linear prediction (LP)  [58,78,79,80,81]. Frequency 

analysis offers more precise measurements of 

amplitude and peak timings [82]. A compilation of 

these investigations on different ERG responses is 

presented in Table 4. 

 

5.2.1 Fourier analysis  

      Fourier Analysis (FA) is a technique that only 

operates in the frequency domain.  It breaks down a 

time-domain signal or a given time series into 

frequency components that together reconstitute the 

original signal[83]. The Fourier Transform allows 

you to identify the magnitude or contribution of each 

frequency in the original signal.  In frequency-

domain analysis, the first step is to transform the 

signal from the time domain to the frequency 

domain using the following technique: 

                         𝑋(𝑓) = ∫ 𝑥(𝑡)  ∙ 𝑒−2𝑗𝜋𝑓𝑡

+∞

−∞

𝑑𝑡                 (1) 

Where X (f) is the signal in the frequency domain 

and x (t) is the signal in the time domain .  The 

original signal can be reconstructed, under specific 

conditions, using the inverse Fourier transform. 

Furthermore, discrete-time implementations of both 

the forward and inverse Fourier transforms are 

commonly employed. In practical applications, the 

transformation in the discrete domain is typically 

performed using the well-established FFT 

algorithm. 

5.2.2 Power spectral density  

       PSD is one of the fundamental tools in bio 

signal analysis, which shows how a signal's energy 

is divided across frequencies [84,85]. Unlike time-

domain analysis, which focuses on amplitude and 

response time, PSD analysis provides accurate 

information about a signal's frequency content, 

allowing for a better understanding of the underlying 

physiological processes. PSD is used in ERG to 

derive spectral features from a sample signal, with 

the energy distribution across frequencies reflecting 

the functions of various retinal layers [86].  PSD is 

commonly determined by Fourier processing the 

signal's autocorrelation sequence [87], which 

follows the mathematical relationship: 

                   𝑆(𝑓) = ∫ 𝑟𝑥𝑥(𝜏)  ∙ 𝑒−2𝑗𝜋𝑓𝑡

+∞

−∞

𝑑𝜏                     (2) 

Where rxx (τ) represents the autocorrelation function, 

and S (f) denotes the power spectral density [88]. 

 

5.2.3 Linear prediction  

      LP is a time series analysis technique widely 

used in signal processing applications such as 

modeling and feature extraction [89]. It is 

considered a parametric spectral estimation method, 

in contrast to non-parametric techniques like PSD or 

the FT. LP is especially preferred when analyzing 

ERG signals with a limited number of samples, 

where traditional methods may not provide 

sufficient information. When the signal duration is 

long enough, the FT can be used to estimate the 

number of poles in the system. One of the main 

advantages of LP is its ability to accurately identify 

the dominant frequencies in short-duration signals. 

This allows for simultaneous detection of frequency 

changes and efficient data compression [90]. 

 

5.2.4 Comparison of studies based on 

frequency approaches 

    As outlined in Table 4, frequency-domain 

analyses, using FT, PSD, and LP, provided more 

precise quantification of retinal responses, 

particularly at specific frequency ranges between 6–

100 Hz. These studies revealed that reductions in 

high-frequency components could serve as early 

markers of cone dysfunction and glaucoma damage. 

Despite the improved signal stability and enhanced 

sensitivity of newer techniques such as LED-based 

PERGx, most research relied on limited datasets and 

cross-sectional designs, which restrict longitudinal 

interpretation of frequency alterations. 

5.3 Time-frequency nalysis  

     Time-frequency analysis (TFA) is a technique 

used to study the spectral changes of a signal over 

time. Time-frequency analysis can easily distinguish 

between signal components that may have the same 

frequency range but occur at different time points, 

making it a useful tool for analyzing non-stationary 

biomedical signals that vary over time [96] .Wavelet 

transform  (WT) are typically applied in both forms 

to increase the amount of information extracted and 

improve results [97]. Indices derived from the 

spectral entropy (power spectrum) and dominant 

frequencies of the time-frequency waveform are 

sometimes used to identify the ERG of affected 
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patients[98]. Various transforms have been used to 

extract features that describe changes in a signal 

across both time and frequency. A summary of time-

frequency-based ERG investigations is presented in 

Table 5. 

5.3.1 Short-Time Fourier Transform  

     STFT is an essential technique for the time-

frequency analysis, which works by separating the 

signal into tiny time windows and performing the 

Fourier transform on each one independently.  This 

method FT allows for the observation of how the 

frequency content of a signal changes over time   

[98,99]. The resulting output is typically presented 

as a two-dimensional representation, where the 

horizontal axis corresponds to time, the vertical axis 

to frequency, and the signal amplitude is encoded 

using color gradients. The resolution of the STFT in 

the frequency domain depends on the window 

length: longer windows provide higher frequency 

resolution but lower time resolution, while shorter 

windows offer better time localization at the cost of 

reduced frequency resolution. This inherent 

compromise, known as the time-frequency trade-off, 

is one of the main limitations of STFT [100] , as it 

prevents simultaneous optimization in both 

domains. The choice and design of the window 

function also significantly influence the analysis 

outcome, as windows help reduce unwanted artifacts 

such as the Gibbs phenomenon, which arises from 

the abrupt truncation of the signal and leads to 

artificial components in the frequency spectrum. 

Proper windowing helps suppress these side lobes, 

enhancing the accuracy of spectral interpretation 

[100,101,102]. 

         𝑋𝑆𝑇𝐹𝑇(𝜏 𝑓) = ∫ 𝑥(𝑡)

∞

−∞

𝑔∗(𝑡−𝜏)𝑒−𝑗2𝜋𝑓𝑡
𝑑𝑡       (3) 

Where g (t) represents the window used, and τ 

represents the time offset.  

 

5.3.2 Wavelet analysis (WA) 

      WT is a powerful and effective method and one 

of the most widely used methods for time-frequency 

analysis. It is particularly important when dealing 

with non-stationary signals, such as biomedical 

signals, whose frequencies vary over time  [95,98]. 

There are two basic types of WT: CWT and DWT 

[103,104] . WT is usually applied in both forms to 

increase the amount of information extracted and 

improve and achieve better results [97].CWT is a 

powerful and flexible analytical tool. It is considered 

a technique for examining non-stationary time series 

data. Where it is used a variable-length analysis 

window that adapts to frequency. This allows for 

high resolution at low frequencies, while short 

windows are used for high-frequency analysis, 

providing a more accurate and time-varying 

assessment. Unlike the STFT, which uses a fixed-

length analysis window, [106]. Furthermore, the 

CWT does not rely exclusively on traditional 

representations in the time and frequency domain; it 

operates on a time scale that can be converted to a 

time-frequency domain using a pseudo-frequency, 

the center frequency of each waveform used in the 

analysis.This transform offers tremendous 

Table 4. A compilation of all frequency-domain investigations performed on all ERG responses. 

Year   

[Ref] 

Signal  /Stimulation No. of Subjects Feature Extraction Limitations 

2015 

[91] 

Flickering & current 

ERG 

6 human subjects FFT (Main frequencies: 12.56 Hz, 

50.26 Hz) 

Artifacts from electrode 

movement; filtered for 

accurate interpretation 

2017 

[92] 

PERGx vs. Pattern 

Electroretinography 

for Glaucoma 

Analysis (PERGLA; 

Light-Emitting Diode 

(LED)-based stimuli) 

57 (29 localized glaucoma, 

10 diffuse glaucoma, 18 

healthy controls) 

FA temporal adaptation 

assessment Signal-to-Noise Ratio ,

SNR( calculation of SS-PERG 

amplitude and latency measured 

via LED-based PERGx at 15.63 

Hz; response adaptation analyzed 

over ~2 min. 

Conventional Cathode Ray 

Tube monitors caused 

response delays; ignored 

temporal adaptation, limited 

dynamic range for advanced 

optic neuropathy cases 

2018 

[93] 

Full-field sinusoidal 

flicker 6–100 Hz 

20 healthy controls, 20 eyes 

with non‑proliferative 

diabetic retinopathy without 

diabetic retinopathy (NDR), 

and 20 eyes with mild non-

proliferative diabetic 

retinopathy (mild NPDR). 

FFT: amplitude & phase of 

fundamental component; harmonic 

analysis 

Small sample; cross-

sectional design limits 

tracking progression; PhNR 

& PERG neglected; weak 

responses at 100 Hz reduce 

assessment accuracy 

2019 

[94] 

ffERG (Light-adapted 

single-flash & 30 Hz 

flicker, short color 

flashes <1 ms, 2.8–4.0 

log Td·s) 

60 eyes (20 healthy, 20 

NDR, 20 mild NPDR) 

Log Rmp3 & log S from a-wave 

(delayed Gaussian model); flicker 

ERG amplitudes from time-

frequency analysis; OPs from 70–

300 Hz filtering 

A cross-sectional design 

prevents tracking 

progression over time or 

inferring causality 

2019 

[95] 

FERG + PERG 12 people (6 normal, 6 

POAG stages I & II) 

Fourier Series + Polynomial 

Amplitude-Frequency 

Characteristics (AFC) 

Very small sample size (6 

normal, 6 POAG) 
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flexibility, as it does not require sinusoidal functions 

and does not impose strict mathematical constraints 

on the signals studied, unlike traditional Fourier 

analysis. This versatility makes it applicable to a 

wide variety of signal types. People think that CWT 

is the best way to find small and fast changes in time, 

and it works very well for looking at local features 

in a signal. 

The following formula defines the CWT, which 

represents the correlation between the continuous-

time signal x (t) under analysis and a function known 

as wavelets [107]. 

               𝐶𝑊(𝑎, 𝑏) = ∫ 𝑥(𝑡)ψ𝑎,𝑏 ∗
+∞

−∞

𝑑𝑡              (4)   

                =
1

√𝑎
∫ 𝑥(𝑡)ψ∗

+∞

−∞

(
𝑡 − 𝑏

𝑎
) 𝑑𝑡                         

Where the function of parameters a and b is denoted 

by CWT (a,b), ψ*(t) is the complex conjugate of the 

analyzing mother wavelet ψ(t), and b specifies a 

translation of the wavelet and shows the temporal 

localization. The parameter a is the wavelet's 

dilatation (scale) [107,108]. The energy-normalized 

factor, or coefficient  
1

√𝑎
  requires that the wavelet's 

energy be constant throughout a range of scale 

values. Moreover, a wavelet function must meet the 

following mathematical requirements to be 

categorized as a fundamental acceptable wavelet 

.[109,110] 

 

The second type is the DWT, which has high 

processing speed and accuracy, making it suitable 

for signal classification and data compression 

applications [109]. Therefore, time-domain analysis 

of retinal function should be complemented by 

DWT descriptors, especially in difficult diagnostic 

cases [112].DWT can be implemented as a filter set 

of high-pass and low-pass filters, along with up-

sampling and down-sampling operations. In the 

DWT coefficient equation is given by the following 

equation is given [113]. 

 

𝐷𝑊𝑇(𝑗, 𝑘) =
1

√2𝑗
∫ 𝑥(𝑡)

+∞

−∞

ψ (
𝑡 − 2𝑗𝑘

2𝑗
) 𝑑𝑡       (5) 

 

 

5.3.3 Matching pursuit  

      Matching Pursuit (MP) is an iterative technique 

that offers effective time-frequency resolution 

across all frequencies [114]. MP has more flexibility 

than WA and STFT, since it adjusts the window 

length based on the local features of the time series 

[115]. Consequently, MP offers superior temporal 

and frequency resolution and has been used for 

diverse signals, including electroencephalography 

(EEG) and electrocardiography (ECG) [115,116]. 

The implementation of MP to ERG signals remains 

in its nascent phase of development. Utilizing an 

iterative process, MP identifies the signal's 

representation within a function dictionary, which 

generally comprises symmetric functions, including 

Gaussian-modulated sine functions, exemplified by 

Gabor functions. Employing a time-frequency 

dictionary of Gabor functions, MP adaptively 

decomposes the one-dimensional signal into a 

collection of wavelet atoms. The features of the 

decomposition may vary depending on the selection 

of time-frequency atoms, such as Gabor. These 

waveforms are automatically selected to optimally 

conform to the signal structures.  

 

 
 

Table 5. A compilation of all-time-frequency feature investigations performed on all ERG responses. 
Year   

[Ref] 

Signal 

Stimulation 

No. of Subjects Feature Extraction Limitations 

2014 

[19] 

Focal Cone 

ERG, 20° 

amber LED, 5 

Hz 

108 (Early AMD 

n=54, Healthy n=54) 

implicit times of the a- and b-waves 

(descending and ascending phases), 

amplitude (Amp), Gradients, 

Frequency domain (5–45 Hz) 

Not specified 

2015 

[24] 

Photopic ERG 28 (Normal 18, IIH 

10) 

Time domain: a,b, PhNR; Frequency  

domain: DWT, Wavelet Energy; 

Time-frequency: PhNR 

reconstruction 

Noise removal; CWT complex & 

redundant → DWT used 

2016 

[118] 

Photopic ERG 61 (Normal 40, 

Patients 21) 

DWT: Amp, time-to-peak (a,b), 

rise/fall 

Weak signals, low SNR; band pass 

filtering causes distortion; DWT 

improves accuracy 

2016 

[119] 

ffERG 1 Normal DWT, CWT, STFT: a,b, i waves, 

PNR, OPs 

Low SNR leads to distortion; 

CWT is affected by the cone of 

influence 

2017 

[120] 

Photopic ERG 20 Normal DWT: PhNR features (Amp at 72 ms, 

Trough Amp, Energy 11 Hz, 60–120 

ms) 

Difficult trough identification; 

DWT complex; weak PhNR-B 

wave correlation 

2017 

[121] 

ffERG 40 Normal FFT, DWT, CWT: Amp & peak time 

(a,b), frequency& spectral features 

Time domain limited; sensitive to 

noise; subtle changes may be 

missed 
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2019 

[122] 

2F-mfERG 60 (Healthy 35, 

POAG 25) 

DWT: variance, energy, median, min, 

max, Standard Deviation )SD(, 

Interquartile Range 

Small sample; central retina only; 

unbalanced age/sex; advanced 

glaucoma not included 

2020 

[123] 

PERG 60 (Healthy 30, 

POAG 30) 

DWT: mean, SD, relative energy 

(detail & approximation L6-7); 

wavelets: db4, db8, sym5, sym7, 

coif5 

Small sample; subtle variations 

hard to assess clinically 

2020 

[124] 

ffERG 34 (Normal 17, 

Central Retinal Vein 

Occlusion )CRVO( 

17) 

CWT: Amp & peak times (a,b, 

PhNR), dominant frequency f0–f3, 

occurrence t0–t3 

Small sample; single disease 

CRVO; single analysis technique 

2021 

[125] 

SS-PERG 45 (Glaucoma 28, 

Healthy 17) 

Amp & phase per packet, slope, 

phase dispersion, grand-average 

vector 

Small sample; only right eye; 

confounders not considered 

2021 [70] ffERG 40 Time domain: Amp & peak (a,b); 

Time-Frequency: STFT, CWT 

(Mexican Hat), DWT 

Small sample; limits 

generalizability (e.g., obesity 

effects) 

2022  

[126] 

PERG 53 (Normal 29, 

Major Depressive 

Disorder )MDD( 24) 

DWT, Principal Component Analysis 

(PCA), Minimum Covariance 

Determinant: Amp & implicit time 

(P50,N95), wavelet features 

Small sample; age/gender 

differences; treatments not 

evaluated separately 

2022 

[127] 

 

ffERG 

(photopic-

scotopic, OPs) 

425 (pediatric & 

adult) 

CWT + machine learning (ML), such 

as Decision Tree algorithms 

Limited database; reliance on 

Gaussian wave 

2023 

[128] 

ffERG (Max, 

Scotopic, 

Photopic) 

323 patients, 1975 

signals (Pediatric) 

CWT: Ricker, Gaussian, Morlet Data unbalanced; resampling used 

2023 

[129] 

ffERG (Max, 

Scotopic, 

Photopic) 

351 (after balancing) CWT: Shannon, Ricker, Morlet, 

Gaussian, Complex Gaussian 

Single device (Tomey EP-1000) 

limits generalizability; noise; 

protocols limited; retinal dystrophy 

only 

2024 

[130] 

ffERG (Max, 

Scotopic, 

Photopic) 

322 patients, 1975 

signals 

Time: a,b Amp & implicit time; Freq: 

FT; Time-Freq: Spectrogram & 

STFT (bmin,bmax,bmedian,bmean) 

ML limited to 4 features; manual 

extraction bias; unbalanced data 

2024 

[131] 

ffERG 

(scotopic, 

photopic) 

120 (after balancing) 4 manually extracted features Small dataset; limited features 

2025 

[132] 

mfERG (103 

hexagons) 

2 (Healthy 1, 

Congenital Stationary 

Night 

Blindness)CSNB( 1) 

Time-Freq signatures, frequency 

energy, temporal indices, waveform 

shape 

Reduced accuracy at signal edges; 

mother wavelet choice affects 

results; CWT more 

computationally intensive than 

DWT 

 

5.3.4 Comparison of studies based on time–

frequency approaches 

     As summarized in Table 5, time–frequency 

analysis of ERG signals has evolved into a 

comprehensive framework that enhances early 

detection of retinal dysfunction. Studies between 

2014 and 2025 progressively integrated temporal 

and frequency information through methods such as 

FFT, DWT, CWT, and STFT, achieving superior 

characterization of a, b-, and PhNR components 

compared with conventional time- or frequency-

only analyses. Wavelet-based techniques, 

particularly DWT and CWT, demonstrated 

improved sensitivity to subtle functional alterations 

and reduced signal distortion, while recent 

combinations with deep learning models (e.g., 

ResNet, DenseNet) achieved classification 

accuracies exceeding 88%. These advancements 

highlight the potential of hybrid analytical 

approaches that combine ERG signal processing 

with artificial intelligence (AI) for early diagnosis 

and clinical decision support. Nevertheless, 

variations in protocols, small sample sizes, and the 

computational complexity of CWT remain major 

challenges for routine clinical application. 

Collectively, these analytical approaches 

demonstrate the progressive evolution of ERG 

signal processing from basic temporal 

characterization to multi-domain analyses 

incorporating spectral and time–frequency 

information. The discussion that follows critically 

compares these methods and outlines their clinical 

and research implications. 

 

     Comparative Analysis and Future 

Prospects 
      A comparative evaluation of analytical domains 

reveals clear distinctions in their diagnostic 

performance and applicability. Time-domain 

methods remain simple and clinically accessible, 

providing direct indicators such as amplitude and 
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implicit time that are easy to interpret but limited in 

sensitivity to subtle functional alterations. 

Frequency-domain techniques, while offering 

higher precision through spectral decomposition, are 

constrained by noise sensitivity and the need for 

standardized acquisition protocols. In contrast, 

time–frequency approaches, particularly wavelet-

based analyses, capture transient and localized 

changes with superior accuracy, supporting the 

detection of early neuronal or vascular dysfunctions. 

From a practical standpoint, integrating time–

frequency features with OCT or AI-based classifiers 

is recommended for future research, as this 

combination enhances both diagnostic specificity 

and automation potential. Clinically, adopting 

hybrid analytical frameworks could improve early 

screening protocols for glaucoma, diabetic 

retinopathy, and hereditary retinal dystrophies, 

facilitating more objective and quantitative 

monitoring of disease progression. 

   Conclusion 
       This review demonstrates that ERG signal 

analysis has evolved from relying on traditional 

time-domain properties, such as amplitude and 

latency, to using more sophisticated techniques in 

the frequency and time-frequency domains. In time-

domain analysis, studies have focused on basic 

indicators of retinal function, but limited sample 

sizes and small signal sizes have limited 

generalizability. Frequency analysis using tools such 

as FFT, PSD, and PERGx has allowed for more 

accurate characterization of frequency components, 

but variability in protocols and the difficulty of exploiting 

high frequencies such as 50 Hz have been limitations. In 

contrast, time-frequency analysis using wavelets (WT, 

CWT, and DWT) has provided a better characterization of 

dynamic changes in signals, but the computational 

complexity and difficulty in selecting the optimal wavelet 

remain practical challenges. Therefore, combining time-

frequency characteristics and electroretinography analysis 

with advanced imaging techniques, such as optical OCT, 

along with machine learning and artificial neural networks 

for feature extraction, represents a promising direction 

toward developing accurate and effective diagnostic tools 

capable of early detection of retinal diseases and better 

monitoring their progression. 
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