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Structured Query Language Injection (SQLi) remains one of the most 

serious threats to web applications and has the ability to bypass traditional 

signature-based detection through obfuscation and zero-day payloads. This 

has driven the wider application of Machine Learning (ML) and Deep 

Learning (DL) techniques. This paper analyzes 50 peer-reviewed 

literatures published in the interval between 2015 and 2025, where the 

reported accuracy of detection ranged between 93 and 99.9%. Traditional 

ML methods include Support Vector Machine (SVM), Random Forest 

(RF), Logistic Regression (LR), and Decision Tree (DT). DL approaches 

encompass Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM), Bidirectional LSTM (BiLSTM), and transformer-based 

models such as Bidirectional Encoder Representations from Transformers 

(BERT). Feature extraction methods include Term Frequency-Inverse 

Document Frequency (TF-IDF), Word2Vec, and contextual embeddings. 

Evaluation of proposed models uncover new research opportunities in 

terms of lack of data availability, the problem of calss imbalance, real-time 

application, and excessive use of hardware resources. 
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1. Introduction 
 

    The fast growth of web-based systems has created 

major security problems, especially in injection 

attacks that take advantage of poor input handling. 

Structured Query Language Injection (SQLi) is one of 

the most common and harmful of these attacks. By 

sending specially designed input, an attacker can 

change how the database works, causing data leaks or 

even complete system compromise [1].  

      Fig. 1  shows a standard SQLi example in a web 

login form. In this case, weak input validation allows 

a malicious user to change the SQL query and get into 

the system without permission. 

 
Fig. 1. SQL Injection Attack Process [1].  

 

   The annual reports of the Open Worldwide 

Application Security Project (OWASP) Foundation, 

between 2017 and 2021, ranked SQLi among the top 

ten most critical web application security risks. During 

this period, its rank fell from first to third place, despite 

that SQLi remained persistently mentioned in  cases 

involving data breaches and infrastructure 

compromises [2].  Fig. 2 presents the OWASP Top 10 

web application security risks, showing the position of 

SQL injection. 

 

Fig. 2. OWASP Top 10 risks in 2017 and 2021 [2]. 

 

      Modern, obfuscated, or zero-day SQLi attacks 

have become increasingly difficult to detect using 

conventional signature-based or rule-driven defense 

mechanisms. These techniques rely on pre-established 

patterns that are inadequate to address new variations 

or payloads that are behaviorally hidden [3]. 

Consequently, the researchers became more interested 

in new and more intelligent solutions due to the wide 

gap between attacker evolution and stagnation of 

defenses. 

      Artificial intelligence (AI) has emerged as an 

essential part of the development of cybersecurity 

systems. AI uses approaches like pattern recognition, 

semantic analysis, and self-directed learning to detect 

and respond to complex attacks in real time. The 

machine learning (ML) component of AI allows 

models to recognize suspicious or unusual patterns in 
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large datasets without requiring complex 

programming [4, 5]. Popular Algorithms such as 

Support Vector Machine (SVM), Random Forest 

(RF), and Neural Networks (NN) possess a high level 

of accuracy when classifying malicious inputs using 

their structural and semantic properties. Intuitively, it 

seems that deep models, including Convolutional 

Neural Networks (CNN) and Recurrent Neural 

Networks (RNN), could specialize in contextual 

embeddings and complex sequence dependencies 

related to query strings. For instance, it has been 

demonstrated that CNN-based detectors could identify 

and capture obfuscated payloads much more 

efficiently than traditional classifiers and extract 

multi-level features. [6]. Therefore, by incorporating 

such models, it will be feasible to develop a much 

more robust and scalable system to detect SQLi. 

   To further enhance the detection of SQLi attacks, 

researchers have increasingly adopted Natural 

Language Processing (NLP) methods alongside ML 

techniques. Text representation strategies such as 

Term Frequency–Inverse Document Frequency (TF-

IDF), Word2Vec, and Bidirectional Encoder 

Representations from Transformers (BERT) have 

proven effective in capturing the syntactic and 

semantic structures of SQL queries, allowing 

classifiers to better distinguish between malicious and 

benign statements. These embeddings assist in 

capturing contextual meaning, which is crucial for 

detecting subtle injection patterns [4]. In addition, 

recent studies have highlighted the advantages of 

hybrid models and ensemble learning techniques that 

combine multiple algorithms to enhance robustness 

and accuracy, especially in identifying obfuscated 

payloads and managing imbalanced datasets in real-

time environments [7, 8] . 

 

1.1 Research gaps  

   While the progress made in the studies is 

commendable, the studies highlighted in the research 

still showcase gaps in real world implementations of 

SQL injection detection. First, there remains a strong 

reliance on classical ML paired with Bag-of-Words 

(BoW), and TF-IDF rather than contextual 

embeddings or hybrid deep architectures, which 

constrains generalization to obfuscated or previously 

unseen payloads [9-11]. 

   Second, the input scope is frequently narrow; most 

works operate on query strings or textual payloads, 

with few explicitly handling richer vectors. For 

example, several studies use only textual inputs or 

Kaggle-style SQL query corpora without broader 

protocol/context features [10, 12, 13].  

   Third, evidence of online or production-grade 

validation is limited: a handful demonstrate 

deployment or real-time feasibility (e.g., a Flask app 

or firewall and edge suitability), but most evaluations 

remain offline [10, 12, 14, 15]. 

   Fourth, explainability is underutilized, apart from a 

few works employing SHapley Additive exPlanations 

(SHAP) and Local Interpretable Model-agnostic 

Explanations (LIME), most models lack integrated 

Explainable Artificial Intelligence (XAI) to support 

auditing in security-critical settings [16, 17]. 

   Fifth, data limitations persist, including small or 

proprietary datasets and reliance on single public 

corpora, which can bias reported metrics; concrete 

examples include modest-sized or single-dataset 

evaluations and limited external validation [18-21]. 

   Finally, only a few frameworks consider multiple 

web attacks (e.g., SQLi and cross-site scripting (XSS)) 

within a unified model, while most approaches remain 

narrowly scoped to SQLi [22, 23]. 

 

1.2 Problem statement 

   Although numerous studies have explored SQL 

Injection detection using ML and DL techniques, the 

development of robust and practically deployable 

solutions remains limited. Current detection 

frameworks frequently limit their analysis to query 

strings or POST parameters, overlooking other 

potentially exploitable vectors, including Hypertext 

Transfer Protocol (HTTP) headers (e.g., User-Agent, 

Cookies) and Domain Name System (DNS)-level 

payloads. DL models have shown good accuracy in 

controlled settings, but they can't be used in real time 

because they take up too much processing power and 

aren't flexible enough to handle new or hidden 

payloads. This is especially true for Web Application 

Firewalls (WAFs) and Intrusion Detection Systems 

(IDSs).  

   Furthermore, the opaque nature of numerous deep 

learning architectures constrains interpretability, 

inhibiting security analysts from validating or auditing 

detection results, which is a crucial necessity for 

security-sensitive systems. Class imbalance in SQLi 

datasets skews models even more toward benign 

queries, making them less sensitive to rare but 

dangerous attack patterns. Lastly, many of the 

proposed detection methods haven't been tested in 

real-world settings, raising concerns about scalability, 

operational feasibility, and long-term adaptability. 
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1.3 Research questions 

   This review tries to answer some basic questions 

about the current state and future direction of SQLi 

detection research.  

   First, it tries to find and compare the different 

machine learning (ML) and deep learning (DL) 

methods that have been used to detect SQLi. It focuses 

on how accurate, efficient, and useful they might be in 

the real world.  

   Second, the review looks at the extent to which 

recent detection models being able to adapt in real 

time, being able to analyze multiple input vectors, and 

being able to explain themselves using XAI 

techniques. Third, it looks at the big research gaps and 

technical problems that still exist in the current 

literature. 

  Finally, it seeks to establish a compilation of optimal 

practices and prospective research trajectories that can 

facilitate the advancement of more resilient, 

comprehensible, and scalable SQL injection detection 

systems. 

 

1.4 Research objectives 
   This review provides a critical, comprehensive 

synthesis of machine learning (ML) and deep learning 

(DL) based SQL injection detection from peer-

reviewed studies published between 2015 and 2025.              

First, it shows how model families, like classical, 

deep, and hybrid, can be designed and what 

preprocessing and feature-representation options they 

have. Second, it looks at how well things work in real 

life, with accuracy as the main way to compare them. 

Third, it points out common methodological problems, 

such as limited generalizability, class imbalance, XAI, 

computational overhead, and real-time constraints. 

Fourth, it looks at practical issues that come up when 

trying to make something scalable and deploy it in a 

security setting. Lastly, it puts together evidence-

based suggestions and design rules for making SQLi 

detection systems that are strong, easy to understand, 

and can grow to fit real-world situations like WAFs 

and IDSs. 

 

2. Research Methodology 
   This review follows a set paln for  reviewing  

literatures. We restricted the scope to peer-reviewed 

studies on SQLi detection using ML and DL published 

between 2015 and 2025. We searched IEEE Xplore, 

SpringerLink, MDPI, and Google Scholar using 

combinations of the terms SQL injection, detection, 

classification, ML, and DL. Duplicates were removed, 

records were screened by title and abstract, then 

assessed in full text against predefined inclusion 

criteria (English, peer-reviewed, ML and DL for SQLi 

with quantitative evaluation) and exclusion criteria 

(non-ML approaches, no dataset or metrics, non-

English, duplicates, outside the timeframe). We 

retrieved 100 records; after deduplication, 71 records 

remained for title–abstract screening and full-text 

assessment, of which 50 studies met the inclusion 

criteria and were included in the final review. For each 

included study, we extracted fields aligned with our 

summary table: Authors, Objective, Method, 

Accuracy (was employed as the primary evaluation 

metric to assess the performance of the applied 

models. Accuracy is formally defined as the 

proportion of correctly classified instances (both 

attack and benign queries) over the total number of 

instances, as shown in Equation (1): 

 

              𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
            (1) 

 

where 𝑇𝑃 denotes true positives, 𝑇𝑁 true negatives, 

𝐹𝑃 false positives, and 𝐹𝑁 false negatives. A higher 

accuracy value indicates that the model can correctly 

distinguish between malicious and legitimate SQL 

queries with greater reliability [30]), Strength Points, 

and Limitations, and complementary details (model 

family, preprocessing and feature representation, use 

of explainability, and any deployment or real-time 

evidence such as Flask, microservices, or firewall or 

edge settings). Owing to heterogeneity across datasets 

and experimental setups, findings were synthesized 

narratively, grouped by model family and 

representation choice; no reimplementation or 

additional quantitative testing was performed. 

 

3. Related Work 

   Prior research on SQL injection detection spans two 

broad strands: classical machine-learning pipelines 

driven by handcrafted textual features, and deep and 

hybrid architectures that learn hierarchical or 

contextual representations directly from payloads. 

   Classical ML with handcrafted features. Numerous 

studies rely on BoW and TF-IDF (or variants such as 

Improved Term Frequency–Inverse Document 
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Frequency(ITFIDF)) with classifiers including SVM, 

Logistic Regression (LR), Naive Bayes (NB), k-

Nearest Neighbors (KNN), Decision Tree (DT), RF, 

and boosted ensembles, often reporting competitive 

accuracy under controlled settings [9, 15, 24, 25]. 

   Work has also examined data imbalance and 

sampling effects on SQLi detection performance, 

highlighting the sensitivity of results to class skew and 

evaluation protocol [8]. Feature-selection methods 

also appear in several papers to streamline models or 

improve generalization [18, 20, 26]. 

   Deep and hybrid models. CNN-based detectors 

trained on network or HTTP payloads have shown 

strong results without manual feature engineering [27, 

28], while hybrids combining CNN with Bidirectional 

Long Short-Term Memory(BiLSTM) capture both 

local n-gram patterns and long-range dependencies 

[13, 22, 29].  

   Representation-learning approaches include 

autoencoder-derived features used with downstream 

classifiers [30]  

   Deep Forest as a non-neural deep alternative [31]. 

Lightweight attention models designed for low-

latency inference [12]. 

   Contextual and sentence-level embeddings. Several 

works move beyond sparse vectors toward dense, 

semantics-aware representations. Comparative studies 

evaluate contextualized embeddings against BoW and 

TF-IDF with classical learners [5], while BERT-based 

or BERT-hybrid architectures (e.g., BERT–LSTM, 

Syntactic Bidirectional Encoder Representations from 

Transformers(synBERT)) aim to capture obfuscation-

resilient semantics at the token or sentence level [23, 

32-35]. 

   Explainability and deployment aspects. A subset of 

studies integrates XAI tooling, such as SHAP or 

LIME, to enhance the auditability of model decisions, 

particularly in operational settings [16, 17].  

   On the deployment side, prior work demonstrates 

practical prototypes or settings including Flask-based 

applications, microservice-oriented designs, and 

firewall, edge-style integrations, indicating a path 

from offline evaluation to applied use cases [10, 12, 

14, 15, 36]. Other efforts aggregate multi-source 

traffic or Internet Service Provider(ISP) data to 

approximate realistic conditions [37-39]. 

   Beyond a single-attack scope. While much of the 

literature targets SQLi specifically, some frameworks 

broaden the scope to multiple web threats (e.g., joint 

SQLi and XSS detection) or related query-injection 

families, underscoring the importance of generalizable 

defenses in heterogeneous environments [15, 22, 35]. 

     

     Fig. 3  Conceptual pipeline summarizing the main 

stages of SQL injection detection techniques, based on 

prior research themes including feature extraction, 

imbalance handling, classification, explainability, and 

deployment. 
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Fig. 3. Conceptual workflow of SQL injection detection 

researches . 

 

Table 1.  Summary of related works evaluation. 

presents a focused comparison of selected 

representative studies from the reviewed literature. 

Each entry highlights the key technique used by the 

authors and outlines the most critical limitations of 

their proposed approaches. This table aims to 

emphasize not only the methodological contributions 

but also the gaps that hinder real-world applicability, 

such as a lack of explainability, the absence of feature 

selection or hybridization, and limited scalability or 

deployment. 

     Fig. 3  Conceptual pipeline summarizing the main 

stages of SQL injection detection techniques, based on 

prior research themes including feature extraction, 

imbalance handling, classification, explainability, and 

deployment. 
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Fig. 3. Conceptual workflow of SQL injection detection researches . 

 
Table 1. Summary of related works evaluation. 

Author Objective Method 
Accura

cy 
Strength Points Limitation 

)Chen et 

al.2021) 

[1] 

To develop DL 

based SQLi 

detection model 

that avoids rule-

based systems. 

Preprocessed HTTP traffic 

through recursive decoding and 

generalization, then applied 

Word2Vec for embedding; trained 

CNN and Multilayer 

Perceptron(MLP) models; 

evaluated using confusion 

matrices and F1-score . 

98.58% 

Combines NLP and 

DL; effective use of 

Word2Vec, CNN, and 

MLP; evaluated on real 

HTTP data with 

detailed metrics . 

Focuses only on first-order 

SQLi; limited to offline 

evaluation; second-order 

and hybrid SQLi attacks 

not addressed . 

)Farooq. 

2021( [4] 

To develop an 

effective SQL 

injection detection 

system using 

Created a labeled dataset of 

35,198 queries (normal, 

malicious, plain text) with 21 

statistical and semantic features. 

99.34% 

Manually constructed, 

balanced, and labeled 

dataset with detailed 

feature engineering; 

No DL models used, 

dataset limited to 

structured queries; 

performance in real-world 
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ensemble ML 

techniques and a 

manually 

constructed feature-

rich dataset . 

Applied four ensemble classifiers 

(Gradient Boosting 

Machine(GBM), Adaptive 

Boosting(AdaBoost), Extreme 

Gradient Boosting(XGBoost), 

Light Gradient Boosting 

Machine(LGBM)) and evaluated 

using 3-fold and 5-fold cross-

validation. 

extensive evaluation 

using multiple metrics, 

comparative analysis 

with prior methods 

showed improvement. 

unstructured web logs not 

tested. 

(Zulu et 

al.2024)[

5] 

Compare 

contextualized vs. 

non-contextualized 

word embeddings 

for SQLi detection 

using ML models 

Applied BoW and Robustly 

Optimized BERT Pretraining 

Approach (RoBERTa). 

embeddings; trained MLP, RF, 

KNN, and LR classifiers on 

Kaggle SQLi dataset 

above 

99% 

High accuracy across 

models, significant 

reduction in training 

time, better model 

calibration with 

contextual embeddings 

Training excludes 

pretraining cost of 

RoBERTa; higher memory 

needed for RoBERTa 

embeddings; BoW models 

consumed high memory 

and showed poor 

generalization in some 

classifiers 

(Zuech et 

al 2021) 

[8] 

Investigate the 

impact of extreme 

class imbalance and 

rarity on the 

detection of SQL 

Injection web 

attacks in the CSE-

CIC-IDS2018 

dataset. 

Evaluated 7 classifiers (DT, RF, 

LGB, XGBoost, Categorical 

Boosting (CatBoost), NB, LR) 

across different Random Under-

Sampling (RUS) random 

undersampling) ratios; Used 

stratified 5-fold CV repeated 10 

times (total 2800 runs); Statistical 

analysis via Analysis of 

Variance(ANOVA) and Tukey's 

HSD. 

- 

Rigorous data 

preparation; Deep 

statistical validation; 

Explored classifier and 

sampling interactions; 

First to deeply analyze 

SQLi rarity in CSE-

CIC-IDS2018. 

Did not explore 

oversampling or hybrid 

sampling; Only focused on 

Area Under the 

Curve(AUC) metric; 

Evaluation limited to SQL 

Injection attacks only from 

two days in the dataset. 

(Pramon

o et al, 

2024).[9] 

Compare the 

effectiveness of NB 

and SVM in 

classifying SQLi. 

Preprocessing TF-IDF and NB vs. 

SVM using the labeled Kaggle 

dataset . 

96.67% 

Simple yet effective 

comparison; tested 3 

data split scenarios . 

Limited to Kaggle dataset; 

does not apply ensemble or 

DL  methods. 

)Ahmed 

et 

al.2021) 

[10] 

Detect SQL and 

NoSQL injection 

attacks using a 

hybrid two-layer 

firewall. 

Layer 1: Pattern matching. Layer 

2: ML classifiers (SVM, DT, 

AdaBoost, RF, LR, NB), 

Synthetic Minority Over-

sampling Technique with Edited 

Nearest 

Neighbors)SMOTEENN(, 

GridSearchCV. 

100% 

Real-time firewall; 

high accuracy; handles 

both SQL and NoSQL; 

dataset published. 

Only textual input; limited 

NoSQL samples; no file 

support; no DL used. 

(Ahmed  

and 

Uddin 

2020) 

[11] 

To enhance SQL 

injection detection 

accuracy using ML 

and NLP 

techniques. 

Collected SQLi and normal 

payloads using tools such as 

LibInjection and SQLMap; used 

token pattern via regex and 

CountVectorizer to extract BoW 

features; applied RF classifier 

with bagging; compared with DT, 

NB, SVM, and KNN. 

98.15% 

Integrated NLP-based 

BoW feature 

extraction, large 

dataset, high 

classification metrics, 

and robust comparison 

with four classifiers. 

Limited to classical ML, 

lacks DL or word 

embedding; no real-time or 

online system evaluation 

implemented. 

(Lo et 

al.2025) 

[12] 

Develop a 

lightweight and 

efficient neural 

network model for 

SQL injection 

detection. 

SQL-specific tokenizer using 

command expression and symbol 

categories combined with CNN 

and multi-head self-attention, 

followed by a sigmoid output 

layer trained on the Kaggle SQL 

injection dataset. 

98.98% 

Compact model with 

69,269 parameters, fast 

inference suitable for 

edge devices, 

competitive with large 

pretrained models like 

A Lite 

Slightly lower accuracy 

than DistilBERT and 

Efficiently Learning an 

Encoder that Classifies 

Token Replacements 

Accurately 
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BERT)ALBERT( and 

Distilled 

BERT)DistilBxERT(. 

)ELECTRA(, limited to 

SQL injection detection, 

depends on the quality of 

the SQL-specific 

tokenizer. 

)Gandhi 

et 

al.2021) 

[13] 

To develop a hybrid 

CNN-BiLSTM 

model for accurate 

detection of SQL 

injection attacks. 

4200 labeled queries processed 

through cleaning, tokenization, 

and embedding, classified using 

CNN for feature extraction and 

Bi-LSTM for sequence modeling. 

98% 

High detection 

accuracy, effective 

hybrid architecture, 

robust comparison with 

multiple models. 

Moderate execution time, 

limited dataset size, no 

discussion of real-time 

deployment or adversarial 

threats. 

(Ogini, et 

al.2022) 

[14] 

To develop a DL 

based Feed-

Forward Neural 

Network )FFNN( 

model for detecting 

SQL injection 

attacks. 

Used a dataset of 30,635 SQL 

queries from Kaggle. 

Preprocessed with 

CountVectorizer and TF-IDF. 

Trained FFNN in TensorFlow, 

Keras, over 20 epochs, and 

deployed using Flask. 

97.65% 

High detection 

accuracy; real-time 

Flask deployment; 

thorough 

preprocessing. 

Limited to FFNN; only 

evaluated on Kaggle data; 

no hybrid model 

comparison or overfitting 

discussion. 

)Pallam 

et 

al.2021) 

[15] 

Detect SQLi & 

XSS using ML 

ensemble methods. 

Used TF-IDF with LGBM, 

AdaBoost, XGBoost , and GBM; 

deployed on a Flask app. 

99.59% 

Practical deployment, 

high accuracy, and an 

IP ban feature. 

Limited XSS data; no real-

time and adversarial 

testing. 

 

(Kakisim 

2024) 

[16] 

To improve SQL 

injection (SQLi) 

detection using a 

DL system 

leveraging multiple 

semantic 

representations. 

Introduced Multi-View 

Convolution-Bidirectional 

Convolutional Neural 

Network(MVC-BiCNN), 

combining BiLSTM and CNN; 

applied multi-view learning with 

tokenized, converted, and 

enriched representations; used 21 

semantic tags; evaluated on 5 

datasets. 

99.96% 

Effective multi-view 

consensus strategy; 

strong generalization 

across datasets; robust 

feature representation; 

XAI explainability with 

LIME. 

Focused only on SQLi; 

does not address XSS or 

other web attacks; limited 

real-time deployment 

evaluation. 

(Le et al., 

2024).[1

7] 

Compare ensemble 

and boosting 

models and enhance 

SQLi detection 

transparency using 

SHAP and LIME . 

Trained DT, RF, XGBoost, 

AdaBoost, Gradient Boosting 

Decision Tree(GBDT), and 

Histogram-based Gradient 

Boosting Decision Tree(HGBDT) 

on an SQL injection dataset; 

evaluated using accuracy, F1-

score, SHAP, and LIME 

explainability techniques. 

99.50% 

High detection 

accuracy; 

explainability through 

SHAP and LIME; 

suitable for real-world 

deployment; thorough 

comparative evaluation 

of multiple models . 

SHAP is computationally 

expensive; XGBoost 

showed limited 

performance in this use 

case; evaluation was 

limited to a controlled 

dataset, not real-time or 

adversarial settings. 

(Alarfaj 

& Khan 

2023).[1

8] 

To enhance the 

detection 

performance of 

SQL injection 

attacks using DL 

A Probabilistic Neural Network 

(PNN) optimized via the BAT 

algorithm; features were extracted 

using tokenization and regular 

expressions, and selected via Chi-

Square test. The dataset included 

6000 SQLi and 3500 benign 

queries. Evaluated using 10-fold 

cross-validation and compared 

with SVM, Artificial Neural 

Network(ANN), and DT. 

99.19% 

Utilized an 

optimization algorithm, 

BAT, to fine-tune the 

smoothing parameter; 

high detection 

accuracy; 

comprehensive 

evaluation with 

multiple classifiers and 

validation setups. 

High model complexity; 

sensitivity to noisy or 

irrelevant features; a 

custom dataset may limit 

generalizability. 



Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17 

10 

 

)Hernaw

an et al, 

2020) 

[19] 

To prevent SQL 

Injection attacks 

using a hybrid 

intelligent detection 

system. 

A hybrid model combining SQL 

Injection Free Secure (SQL-IF) 

and NB, implemented as a proxy . 

90% 

Integrates pattern 

matching and ML; 

works as a real-time 

proxy; evaluated using 

real attacks. 

Increased web load time 

due to dual processing; 

dataset limited to 250 

queries; lacks external 

validation. 

(Arasteh 

et 

al.2024) 

[20] 

Improve SQL 

injection detection 

by selecting optimal 

features and 

classification 

techniques. 

Developed a Binary Olympiad 

Optimization Algorithm (BOOA) 

for feature selection; trained 

classifiers (ANN, DT, SVM, 

KNN) on 13 numerical features; 

compared performance with and 

without BOOA-selected features. 

99.35 

Effective feature 

reduction boosting 

accuracy; high stability 

across runs;  

combination of BOOA 

and ANN yields top 

performance. 

Does not explore DL; 

limited to a modest dataset 

size; only 13 hand-

engineered features used. 

(Alghaw

azi et 

al.2023) 

[21] 

To develop an RNN 

autoencoder 

architecture for 

detecting SQL 

injection attacks . 

They trained an RNN autoencoder 

consisting of an encoder–decoder 

pair to compress and reconstruct 

SQL queries and added an LSTM-

based classifier on the encoded 

representations. 

94% 

The architecture 

captures sequential 

patterns effectively and 

was benchmarked 

against seven other 

classifiers . 

Evaluation used a single 

public dataset, without 

real-world deployment or 

larger, more diverse data 

samples. 

(Tadhani 

et 

al.2024) 

[22] 

Develop a unified 

DL model to detect 

both SQLi and XSS 

web attacks 

effectively. 

Hybrid CNN–LSTM model with 

preprocessing (decoding, 

standardization, tokenization) and 

Word2Vec embedding. 

99.84% 

Unified model detects 

multiple attack types; 

high accuracy across 

three datasets; effective 

preprocessing and 

embedding strategy. 

High training time; 

performance may be 

dataset-dependent; not 

tested on other attack types 

like Zero-day or phishing. 

(Bakır 

2025) 

[23] 

Unified detection of 

XSS and SQL 

injection using 

fused embeddings. 

UniEmbed: fuse Universal 

Sentence Encoder(USE) sentence-

level, Word2Vec word-level, 

FastText subword-level; train ML 

classifiers LR, SVM, GNB, DT, 

KNN, MLP, RF; use hard voting 

and soft voting. 

99.82% 

Multi-level feature 

fusion yields top 

performance; 

consistent results 

across datasets and 

classifiers; efficient 

inference. 

Tested only on benchmark 

datasets; no live 

deployment; limited to text 

inputs; not evaluated on 

novel attack types. 

(Li & 

Bin 

2019) 

[24] 

To enhance SQL 

injection attack 

detection by 

improving the 

traditional TF-IDF 

algorithm through 

distribution-aware 

feature weighting. 

Proposed an ITFIDF algorithm 

considering feature distribution 

across SQL statement types, 

extracted 34 features including 

keyword frequency and ITFIDF 

of 32 sensitive characters, used 

SVM for classification, and 

compared against existing 

methods and classifiers.(KNN and 

DT). 

99.08% 

Higher feature 

representation 

accuracy, superior 

classification 

performance with 

SVM, and improved 

metrics over baseline 

methods. 

Limited dataset diversity, 

no real-time system 

evaluation, lacks 

contextual or semantic 

analysis of SQL 

statements. 

(Zhang 

et 

al.2022) 

[25] 

Propose a deep 

neural network 

(SQLNN) for 

accurate SQL 

injection detection. 

SQL Neural Network (SQLNN) 

model using TF-IDF for feature 

extraction, Rectified Linear 

Unit(ReLU) activation, Adam 

optimizer, and Dropout 

regularization; compared with 

KNN, DT, and LSTM . 

96.16% 

Integrates DL with 

automated feature 

extraction, avoids 

overfitting using 

Dropout, robust against 

evasion attacks . 

Lacks real-time 

deployment validation; 

relies on a single dataset 

from Kaggle . 

(Purbawa 

et 

al.2023) 

[26] 

Enhance detection 

accuracy of SQLi 

using an ML 

ensemble . 

Preprocessing (stemming, 

lemmatization, TF-IDF), models: 

LR, LDA, GNB, RF, and Voting 

Classifier (soft voting). 

97.07% 

Combined multiple ML 

algorithms with feature 

selection (ANOVA) 

and vectorization (TF-

IDF), using Kaggle 

data. 

Limited to classical ML 

models only, no 

comparison with DL, used 

only one small dataset 

version. 
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(Shahbaz 

et al, 

2024).[2

7] 

To propose a CNN-

based model for 

detecting SQL 

injection attacks 

without manual 

feature engineering . 

Built a CNN model trained on a 

dataset of 109,520 SQL queries 

(80% train, 20% test) using 

embedding, with one-dimensional 

convolution (Conv1D), pooling, 

and dense layers for feature 

extraction and classification. 

98.16% 

High detection 

accuracy; automatic 

feature learning; 

minimized false 

positives and negatives. 

Requires diverse data; high 

computational resources; 

slightly lower performance 

on malicious queries 

(FN=484). 

(Luo et 

al.2019) 

[28] 

To detect SQL 

injection attacks 

using a CNN-based 

model and compare 

it with traditional 

rule-based 

detection . 

Collected SQL injection payloads 

from real HTTP traffic, applied 

data sanitization and vectorization 

using Gensim, and trained a CNN 

model consisting of three 

convolutional and pooling layers 

with a fully connected and hidden 

layer . 

99.50% 

Utilized real-world 

traffic, applied 

thorough 

preprocessing, and 

demonstrated 

robustness against 

obfuscated attacks . 

Focused only on CNN 

without comparing other 

DL models, limited to 

binary classification, and 

lacked broader dataset 

diversity. 

(Alsham

mari 

2023) 

[29] 

To evaluate and 

compare the 

performance of 

ANNs, CNNs, and 

RNNs for detecting 

SQL injection 

attacks . 

Applied ANN with TF-IDF 

vectors, CNN with embedding, 

convolution, pooling, and RNN 

with LSTM on SQL query 

dataset . 

99.70% 

Clear comparison 

between different 

neural network 

architectures using the 

same dataset and 

evaluation metrics. 

Limited dataset; no real-

world deployment; lacks 

comparison with 

traditional ML or hybrid 

models. 

)Thalji et 

al. 2023) 

[30] 

To develop an 

automated, AI-

based method for 

detecting SQLi 

attacks without 

human intervention. 

Proposed Autoencoder Network 

(AE-Net) to extract high-level 

deep features from SQL queries. 

Evaluated with ML and DL 

models: KNN, LR, RF, XGBoost 

(for BoW & TF-IDF), and KNN, 

RF, XGBoost, LSTM (for AE-Net 

features). Hyperparameter tuning 

and k-fold validation applied. 

99% 

Novel deep features 

improved detection; 

robust evaluation . 

LSTM underperformed; 

high runtime for XGBoost; 

no real-time Graphical 

User Interface(GUI) . 

(Q. Li et 

al. 2019) 

[31] 

Propose an 

effective SQLi 

detection method 

for complex 

environments. 

Adaptive Deep Forest (ADF) with 

AdaBoost uses multi-grained 

scanning and cascade forest 

architecture . 

98.00% 

Automatically adjusts 

parameters; low 

overfitting; high 

accuracy with small 

datasets; better than 

Deep Neural 

Network(DNN) and 

ML models. 

Slightly outperformed by 

DNN when training 

samples exceed 16,000; 

limited dataset diversity. 

)Liu and 

Dai 

2024([32

] 

Propose a hybrid 

BERT–LSTM 

model for detecting 

SQLi attacks. 

BERT for contextual embeddings, 

and LSTM for sequence 

modeling. Dataset: HttpParams 

(30,156 samples). 

97.3% 

High accuracy; robust 

to obfuscation; 

effective semantic 

modeling. 

Limited performance on 

encoded/XSS attacks; 

needs decoder integration. 

(Lu et al 

2023).[3

3] 

Propose an accurate 

and generalizable 

model for SQL 

injection detection. 

Developed synBERT, a semantic 

learning-based model that embeds 

SQL statement semantics; trained 

and evaluated on multiple 

datasets . 

99.74% 

Introduces semantic 

understanding via 

syntax trees; strong 

generalization, BERT-

based deep 

architecture . 

Missing details on dataset 

balance and real-world 

scalability; limited ablation 

and interpretability 

analysis. 
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(Sun et 

al.2023) 

[34] 

To propose a DL-

based detection 

method for SQL 

injection attacks . 

Employed an enhanced TextCNN 

for local feature extraction, 

followed by Bi-LSTM for 

sequential learning. Integrated an 

attention mechanism to improve 

long-sequence handling and 

incorporated BERT for transfer 

learning . 

above 

99.57% 

A combination of 

CNN, Bi-LSTM, 

attention, and BERT; 

effective for complex 

and evolving SQLi 

patterns. 

Dataset type and size not 

specified; lacks exact 

metrics (e.g., accuracy, F1-

score); not validated in 

real-world deployment . 

(Devalla 

et al. 

2022) 

[35] 

To detect SQLi, 

NoSQLi, and 

malicious URL 

attacks using 

intelligent models, 

including ML and 

DL methods. 

Proposed the mURLi tool 

integrating RF, KNN, XGBoost, 

AdaBoost, ANN, BiLSTM, and 

BERT; applied feature 

engineering and Synthetic 

Minority Over-sampling 

Technique )SMOTE( balancing. 

99.84% 

Extensive feature 

engineering, effective 

model comparison, 

strong BERT 

performance on textual 

inputs, and effective 

SMOTE application. 

A small NoSQLi dataset 

reduced BiLSTM 

accuracy; BERT 

underperformed on a 

numeric-based malicious 

URL dataset. 

)Garcia, 

et 

al.2024) 

[36] 

To compare ML 

algorithms for SQLi 

detection in web 

microservices . 

Trained SVM, RF, and DT using 

TF-IDF and CountVectorizer; 

deployed in a microservices-based 

architecture . 

99%, 

Realistic microservices 

deployment; balanced 

dataset; high detection 

performance; practical 

evaluation . 

Limited prior studies on 

SQLi in microservices; 

challenges in handling 

complex query structures; 

not tested in real-time 

adversarial settings. 

)Tang et 

al.2020([

37] 

To develop a neural 

network-based 

model for accurate 

SQL injection 

detection using both 

statistical and 

sequential URL 

features. 

Extracted 8 statistical features for 

MLP and used American 

Standard Code for Information 

Interchange(ASCII)-encoded 

sequences for LSTM; models 

trained using PyTorch . 

99.67% 

Proposed dual-model 

comparison using both 

MLP (fast, feature-

based) and LSTM 

(sequential, scalable); 

real ISP data used . 

LSTM showed lower 

accuracy and significantly 

higher detection time; 

ASCII encoding limited 

the distinction between 

characters . 

(Ross et 

al.2018) 

[38] 

Propose a multi-

source data analysis 

system to improve 

SQL Injection 

detection accuracy . 

Designed a vulnerable enterprise 

chat web application; captured 

HTTP and MySQL traffic using 

Snort and Datiphy appliances; 

generated normal and attack 

traffic (manual SQLi and 

SQLMap); used Waikato 

Environment for Knowledge 

Analysis (WEKA( with feature 

selection (Correlation-based 

Feature Selection(CFS) and 

Genetic Search); evaluated 

classifiers (JRip, J48, RF, SVM, 

ANN) on three datasets: Webapp, 

Datiphy, and Correlated. 

98.06% 

Multi-source data 

improves detection, 

systematic feature 

selection, detailed time 

and performance 

metrics. 

Simulated dataset (not 

real-world traffic); ANN is 

accurate but slow; no 

generalization to other 

attack types yet . 

(Daramol

a et 

al.2025) 

[39] 

Proactive detection 

and classification of 

malicious SQL 

queries . 

Collected & preprocessed 88,213 

labeled queries; engineered 

features (entropy, keywords, 

tokenization); trained and 

compared RF, MLP, SVM, NB. 

98.4%, 

Very large, diverse 

dataset; end-to-end 

pipeline; comparative 

evaluation of four ML 

models; open data . 

No hyperparameter tuning; 

limited to SQLi; not 

evaluated on non-SQLi 

attacks or real-time 

deployment. 
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(Muham

mad et 

al.2022) 

[40] 

To implement 

predictive analytics 

for detecting and 

classifying SQL 

injection attacks 

using ML 

classifiers. 

Multiple ML algorithms (LR, 

Sequential Minimal Optimization 

(SMO), J48, Instance-Based K 

(IBK), Stochastic Gradient 

Descent (SDG), NB, and 

Bayesian Network 

Classifier(BNK)) were trained 

and evaluated using WEKA with 

10-fold cross-validation and hold-

out. Features extracted from 

Damn Vulnerable Web 

Application(DVWA) access logs. 

98.77% 

Comprehensive metric-

based evaluation; 

realistic simulation 

environment; robust 

model via hybrid 

detection. 

Limited dataset size from 

DVWA; lacks real-time 

detection; no use of 

contextual embeddings . 

)Triloka 

et 

al.2022) 

[41] 

To detect SQLi 

attacks using ML 

and NLP-based 

feature engineering . 

Tested five classifiers (SVM, 

KNN, LR, GB, NB) using text-

based features and corpus 

processing with Python NLTK . 

99.77% 

Used dual datasets 

(training and 

challenge), NLP-based 

preprocessing, 

evaluated Time of 

Process, and accuracy . 

Limited to specific corpus 

parameters; real-world 

generalizability not 

validated . 

(Hirani 

et 

al.2020) 

[42] 

To detect and 

compare SQLi 

attack detection 

performance across 

CNN and 

traditional ML 

algorithms. 

Compiled a dataset with various 

SQLi types (union, blind, error-

based); preprocessed and labeled 

payloads; evaluated DT, NB, 

SVM, KNN, and CNN classifiers. 

94.84% 

Wide dataset coverage, 

including multiple 

database(DB) types; 

strong CNN 

performance; thorough 

comparison with four 

ML models; robust 

metric analysis. 

Architecture details of 

CNN not provided; dataset 

size not explicitly stated; 

real-time deployment and 

generalizability not 

evaluated 

(Li et al 

2019) 

[43] 

To develop an 

effective SQL 

injection detection 

method tailored for 

intelligent 

transportation 

systems using DL. 

Proposed an LSTM-based 

classifier combined with a SQL 

injection sample generation 

method to address data imbalance 

and overfitting. Word2Vec was 

used for feature embedding. The 

model was trained and evaluated 

on six datasets (DS1–DS6). 

93.47% 

Automatic feature 

learning via LSTM, 

effective positive 

sample generation 

reduced overfitting; 

strong generalization 

and high accuracy. 

Generated samples may 

not cover all real-world 

SQLi variations; limited 

validation in diverse real-

world deployment 

environments. 

(Jothi et 

al 2021) 

[44] 

To design an 

efficient SQL 

injection detection 

system using DL. 

Used an MLP model with an 

embedding layer trained on SQLi 

queries from the Lib-Injection 

dataset and normal plain text. 

Data preprocessing included 

tokenization, stop-word removal, 

lemmatization, character filtering, 

word indexing, and padding. 

98% 

The model can detect 

all types of SQL 

injection attacks, does 

not rely on manually 

defined features, 

supports generalization, 

and can be extended to 

URL-based input 

detection . 

The model does not use n-

gram features, which limits 

its understanding of 

sentence context, 

potentially causing 

misclassification in rare 

cases . 

(Ladole 

and 

Phalke 

2016) 

[45] 

To detect SQL 

Injection attacks 

and classify users 

(normal or attacker) 

based on queries. 

Query tree generation using 

PostgreSQL logs; feature 

extraction via Fisher Score; 

classification via SVM 

implemented through the WEKA 

library. 

94.12% 

Utilized structural 

query trees for better 

detection; combined 

query analysis with 

user behavior 

classification. 

Evaluation on a limited 

dataset lacks DL models; 

only binary classification. 

(Hasan  et 

al. 2019) 

[46] 

To develop an 

intelligent system 

for detecting SQL 

injection attacks 

using ML 

techniques and 

Evaluated 23 ML classifiers using 

MATLAB; selected the top five 

based on accuracy. Collected SQL 

statement datasets from 

w3schools and OWASP. 

Extracted numerical features for 

93.8% 

Comprehensive 

evaluation of multiple 

classifiers, integration 

of a user-friendly GUI, 

and high detection 

Limited number of benign 

(non-injected) statements 

affected overall accuracy, 

relied on basic numerical 

features, and the system 
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enhance detection 

accuracy via a GUI 

interface. 

classification and implemented a 

GUI-based detection system. 

accuracy for injected 

queries. 

was not validated in a real-

world environment. 

(Sommer

voll et al. 

2024) 

[47] 

Develop RL agents 

to simulate all types 

of SQL injection. 

Trained Q-learning agents in a 

synthetic environment with 5 

SQLi types and improved 

preprocessing. 

96% 

Covers all SQLi types; 

enables transfer 

learning; reduces 

expert input; realistic 

simulation . 

Lower accuracy in 

uncertain cases; Q-learning 

scalability limits; synthetic 

setup lacks real-world 

complexity. 

(Ismail et 

al., 

2024) 

[48] 

To identify a 

lightweight ML 

model for detecting 

cyber-attacks in 

blockchain-enabled 

industrial supply 

chains. 

Compared NB, KNN, RF, DT, 

Bagging, Stacking, and CatBoost 

on the WUSTL-IIOT-2021 

dataset using Mutual Information 

(MI) and Extra-trees (ET) for 

feature selection and 

undersampling for class balance. 

- 

Stacking outperformed 

in most metrics; 

CatBoost had highest 

precision; NB was 

fastest to train, DT 

fastest to predict. 

Stacking had high training 

time; the study focused on 

only four types of attacks, 

and no DL models were 

included for comparison. 

)Muduli 

et al. 

2024) 

[49] 

Develop two 

customized 

convolutional 

neural network 

models (SIDNet-1 

and SIDNet-2) for 

high-accuracy SQL 

injection detection 

and prevention, 

with the ability to 

integrate into web 

protection systems. 

Utilized datasets containing both 

benign and malicious SQL 

queries, converting them into 

numeric arrays (64×64×1), 

followed by a multi-layer CNN 

architecture (convolutional, 

MaxPooling, Dropout, Dense). 

SIDNet-2 includes additional 

Dropout layers after each 

convolutional and pooling to 

improve generalization. 

Performance compared with ML 

models (SVM, KNN, DT, NB) 

and previous DL models. 

98.02% 

Custom architecture 

tailored for SQL data, 

incorporation of 

generalization 

improvement strategies 

(Dropout), deployable 

in WAF or post-

firewall, supports 

continuous learning to 

adapt to evolving 

threats. 

Not tested extensively in 

real-world environments, 

did not evaluate other web 

attacks (e.g., XSS), 

performance depends on 

the quality and diversity of 

the dataset. 

)Abaimo

v and 

Bianchi, 

2019) 

[50] 

Detect code-

injection attacks 

(SQL and XSS) 

with DL. 

CNN with a tailored pre-

processing stage that encodes 

symbols as type and value pairs; 

local search to optimize network 

configuration; optional static 

signature check. 

Up to 

94% 

Reduces training 

requirements through 

semantic encoding; 

modular and easily 

reconfigurable 

framework. 

Relies on domain-specific 

pre-processing knowledge; 

performance varies with 

data and necessitates 

retraining when data 

distributions change. 

(Kim et 

al. 2020) 

[51] 

Apply DL (CNN-

LSTM with 

normalized 

Unicode 

Transformation 

Format – 8-bit  )

UTF-8( encoding of 

spatial features) to 

detect unknown or 

obfuscated web 

attacks and to 

improve Snort rules 

in real time. 

Run a signature NIDS (Snort) in 

parallel with a Traffic Analysis 

System; learn on HTTP payloads 

at the application layer; fast 

preprocessing via UTF-8 

encoding; CNN-LSTM model 

tuned for scalability (Docker). 

93% 

Detects encoded or 

obfuscated payloads 

that Snort misses; 

assists in authoring and 

refining Snort rules 

(approximately five 

new rules per month) 

while avoiding 

duplicates; flexible, 

scalable design with 

daily labeling for 

continual retraining. 

Requires analyst 

verification initially due to 

false positives; public 

benchmark sets are small, 

which can induce 

overfitting; focuses on 

HTTP and excludes Secure 

Sockets Layer(SSL) and 

User Datagram Protocol 

(UDP); depends on high-

quality labeled data. 

 

   The fifty studies reviewed show how SQL injection 

detection has changed from traditional machine-

learning pipelines with hand-crafted features to deep 

and hybrid architectures that can learn contextual or 

hierarchical representations directly from payloads. 

Classical methods, mainly using BoW, TF-IDF, or 

similar methods like ITFIDF with classifiers like 

SVM, RF, and LR, still work well in controlled 

settings [9, 15, 24, 25], but they are often specific to one 

dataset and can't handle inputs that are hidden or meant 

to trick the system. Deep learning techniques, 

especially CNN, Bi-LSTM, and their hybrids  [13, 21, 
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27, 34], can extract features and model sequences 

better, but they may need more computing power, 

which makes them less useful in real time. Contextual 

embeddings, such as BERT-based variants [5, 12, 33, 

35], improve semantic resilience but still have 

problems with memory efficiency and inference 

latency. 

 

   From a deployment perspective, only a subset of 

work transitions from offline experiments to 

operational prototypes. Examples include Flask-based 

services [14, 15], and firewall or edge-device 

integrations [10, 12, 49], highlighting a persistent gap 

in real-world validation. Similarly, explainability via 

SHAP or LIME is present in select studies   [16, 17], but 

remains underutilized, reducing auditability in 

security-critical contexts. Data-related constraints are 

also prevalent, with many evaluations relying on 

small, single-source, or synthetic datasets  [26, 31, 35], 

undermining generalizability. Furthermore, multi-

attack detection frameworks remain rare, with most 

solutions narrowly scoped to SQLi  [42, 44, 47] . 

   These patterns underscore the primary gaps 

addressed by the present work: employing enriched 

and multi-source feature representations to improve 

robustness across diverse payload formats, integrating 

deep contextual modeling with resource-aware design 

to balance accuracy and deployment feasibility, 

embedding explainability into the detection pipeline 

for enhanced transparency, and extending detection 

capabilities to broader web-attack families within a 

unified, real-time framework. 

 

4.  Results and Discussion 
The included studies report high accuracies under 

controlled evaluations across classical ML pipelines, 

deep and hybrid architectures, and contextual-

embedding approaches. Classical NLP and ML 

baselines can be strong: TF-IDF and other NLP 

features with NB and SVM or ensembles reach 96–

99% in several works, including 99.77% with NLP-

based preprocessing and multiple classical classifiers, 

and 98.15% with BoW and RF against four ML 

baselines [11] 

   Deep-learning advances show comparable or higher 

performance while reducing manual feature 

engineering. Pure CNN detectors achieve 98.16% and 

99.50% on large or real-traffic datasets [27, 28], 

whereas a CNN–BiLSTM hybrid reaches 98% on 

labeled queries [13]. A lightweight CNN with multi-

head self-attention attains 98.98% with 69,269 

parameters and fast inference suitable for edge devices 

[12]. 

   Contextual and sentence-level semantics further 

improve robustness. A BERT–LSTM hybrid reports 

97.3% on HttpParams [32]; synBERT reaches 99.74% 

with semantic learning [33], and a TextCNN followed 

by Bi-LSTM with an attention mechanism exceeds 

99.57% [34]. Comparative work finds that 

contextualized embeddings deliver over 99% accuracy 

with better calibration and reduced training time, 

although they require more memory and typically 

exclude the pretraining cost [5]. 

   Evidence of practical deployment exists but remains 

limited. Examples include a Flask-based ensemble 

system [15]. , microservice-oriented deployment with 

TF-IDF and CountVectorizer [36], and a two-layer 

firewall combining pattern matching with ML [10], 

The lightweight attention model targets edge scenarios 

[12]. However, many studies still lack online 

evaluation or adversarial testing. 

   On explainability, one ensemble study integrates 

SHAP and LIME with 99.50% accuracy, supporting 

auditability, although such tooling is not yet 

widespread [17]. 

   Recurring limitations include small or single-source 

datasets, scarce external or real-time validation, and 

computational demands for some deep models. 

Reported issues include limited or simulated data, 

missing dataset details, resource requirements, or 

slightly lower performance on certain malicious 

subsets [12, 15, 41]. 

   Ranking summary. Contextual-embedding and 

BERT-hybrid methods generally top accuracy (often 

99%) [5, 33, 34]; CNN and BiLSTM hybrids follow 

closely (98–99.5%) [13, 27, 28]; classical TF-IDF and 

BoW pipelines provide strong baselines (96–99%) 

with lower complexity[9, 11, 25]. 

   Accuracy complexity trade-off. Contextual 

embeddings improve calibration but increase memory 

footprint [5]; lightweight attention models trade a 

minor accuracy margin for fast edge-side inference 

[12]. 

 

5. Conclusion 
     This review indicates that SQL injection detection 

attains high performance across three main families of 

approaches: classical pipelines based on textual 
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representations, such as TF-IDF [9, 25, 36]; deep and 

hybrid models built on convolutional and recurrent 

networks, including CNN and CNN–BiLSTM [13, 27, 

28]; and contextual-embedding and modern language–

representation methods [5, 33, 34]. 

     In general, contextual approaches lead in accuracy 

but require more memory [5], lightweight attention- 

and CNN-based models are better suited to edge, low-

latency scenarios [12], and classical pipelines remain 

strong, low-complexity baselines[11]. 

      Deployability is evident yet still limited: examples 

include Flask-based prototypes [15]. , microservice-

oriented deployments [36], and firewall or edge 

integrations [10, 12]. Nevertheless, live-traffic 

evaluation and adversarial testing remain scarce [10, 

12, 15] Explainability is only sparsely adopted [17], and 

dataset constraints together with heterogeneous 

protocols hinder external validity [12, 15, 41]. 

   Operational notes. In terms of computational 

complexity, a lightweight attention model contains 

about 69,269 parameters with fast inference 

appropriate for edge devices [12]. Contextual 

embeddings generally increase memory requirements, 

and pretraining cost is typically not included in 

reported training time [5]; BoW representations can 

also inflate memory as vocabularies grow [5]. 

Regarding error profiles, one CNN study reported a 

notable number of false negatives on the malicious 

subset, underscoring the need for careful threshold 

calibration to balance missed attacks against false 

alarms [27]. On the resource side, deployments span 

traditional servers via Flask [15], cloud microservices 

[36], firewall-style integrations [10], and edge 

execution for lightweight models [12]. 

 

6. Limitations  
   While this literature review comprehensively 

synthesizes fifty peer-reviewed studies on SQL 

injection detection using ML and DL techniques, 

several constraints remain: In terms of the review’s 

scope, it has to be noted that the literature review only 

covers studies published between the years 2015 and 

2025, and only within the bounds of reputable, peer-

reviewed journals, including IEEE, Springer, Elsevier, 

ACM, and MDPI. While some relevant indexed 

literature may be grey and non-published, which holds 

some relevant emerging perspectives, these have also 

been excluded. This review also focuses on SQLi 

specifically, including only studies where SQLi was 

the primary focus. Research concerning broader web-

attack detection was left out, unless SQLi was 

explicitly considered, which may lead to the omission 

of relevant methodology found within adjacent fields, 

including Cross-Site Scripting (XSS) or Denial of 

Service (DoS). This review also relies on the measures 

provided within the studies. The review may be able 

to generate an analysis based on performance metrics 

and methodological attributes provided by authors, but 

any inconsistencies concerning reporting standards or 

dataset descriptions may impact the comparison of 

results across the studies. There is also the question of 

pace concerning the fast movement of AI-driven 

security research, where the relevant techniques or 

datasets may outpace the review’s closing date, 

leading to revisions of some of the trends or gaps that 

have been identified. 

 

7. Future Work. 
   Firstly, broadening inclusion criteria to incorporate 

high-quality but non-indexed sources, technical 

reports, and industry white papers to capture state-of-

practice alongside academic research.  

 Second, extending the scope to multi-attack detection 

literature to identify architectures adaptable beyond 

SQLi.  

   Third, conducting a meta-analysis to statistically 

compare performance across studies and identify 

effect sizes of different feature extraction or model 

types.  
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