
1

NTU Journal of Engineering and Technology (2025) 4 (4): 1 - 17

DOI: https://doi.org/10.56286/ntujet.v4i4

Machine Learning and Deep Learning Approaches for SQL
Injection Detection: A Review

 Sahar Saadallah Ahmed1 , Mohand lokman Al dabag2

1Department of Computer Engineering Technology, Engineering Technical College, Northern Technical University, Iraq,
2Computer Center, Northern Technical University, Iraq.

sahar_saadallah@ntu.edu.iq, mohandaldabag@ntu.edu.iq

Article Informations A B S T R A C T

THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE:

https://creativecommons.org/licenses/by/4.0/

Structured Query Language Injection (SQLi) remains one of the most

serious threats to web applications and has the ability to bypass traditional

signature-based detection through obfuscation and zero-day payloads. This

has driven the wider application of Machine Learning (ML) and Deep

Learning (DL) techniques. This paper analyzes 50 peer-reviewed

literatures published in the interval between 2015 and 2025, where the

reported accuracy of detection ranged between 93 and 99.9%. Traditional

ML methods include Support Vector Machine (SVM), Random Forest

(RF), Logistic Regression (LR), and Decision Tree (DT). DL approaches

encompass Convolutional Neural Networks (CNN), Long Short-Term

Memory (LSTM), Bidirectional LSTM (BiLSTM), and transformer-based

models such as Bidirectional Encoder Representations from Transformers

(BERT). Feature extraction methods include Term Frequency-Inverse

Document Frequency (TF-IDF), Word2Vec, and contextual embeddings.

Evaluation of proposed models uncover new research opportunities in

terms of lack of data availability, the problem of calss imbalance, real-time

application, and excessive use of hardware resources.

Received: 27-04- 2025,

Revised: 21-08-2025,
Accepted: 01-09-2025,
Published online: 28-12-2025

Corresponding author:
Name:Sahar Saadallah Ahmed

Affiliation: Department of

Computer Engineering

Technology, Engineering

Technical College, Northern

Technical University, Iraq

Email:
sahar_saadallah@ntu.edu.iq

Key Words:

Web Application Security,

SQL Injection (SQLi),

Machine Learning (ML),

Deep Learning (DL),

Natural Language Processing

(NLP),

https://doi.org/10.56286/ntujet.v4i3
mailto:sahar_saadallah@ntu.edu.iq
mailto:mohandaldabag@ntu.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0003-3920-6102
https://orcid.org/0000-0003-1682-4293
mailto:sahar_saadallah@ntu.edu.iq

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

2

1. Introduction

 The fast growth of web-based systems has created

major security problems, especially in injection

attacks that take advantage of poor input handling.

Structured Query Language Injection (SQLi) is one of

the most common and harmful of these attacks. By

sending specially designed input, an attacker can

change how the database works, causing data leaks or

even complete system compromise [1].

 Fig. 1 shows a standard SQLi example in a web

login form. In this case, weak input validation allows

a malicious user to change the SQL query and get into

the system without permission.

Fig. 1. SQL Injection Attack Process [1].

 The annual reports of the Open Worldwide

Application Security Project (OWASP) Foundation,

between 2017 and 2021, ranked SQLi among the top

ten most critical web application security risks. During

this period, its rank fell from first to third place, despite

that SQLi remained persistently mentioned in cases

involving data breaches and infrastructure

compromises [2]. Fig. 2 presents the OWASP Top 10

web application security risks, showing the position of

SQL injection.

Fig. 2. OWASP Top 10 risks in 2017 and 2021 [2].

 Modern, obfuscated, or zero-day SQLi attacks

have become increasingly difficult to detect using

conventional signature-based or rule-driven defense

mechanisms. These techniques rely on pre-established

patterns that are inadequate to address new variations

or payloads that are behaviorally hidden [3].

Consequently, the researchers became more interested

in new and more intelligent solutions due to the wide

gap between attacker evolution and stagnation of

defenses.

 Artificial intelligence (AI) has emerged as an

essential part of the development of cybersecurity

systems. AI uses approaches like pattern recognition,

semantic analysis, and self-directed learning to detect

and respond to complex attacks in real time. The

machine learning (ML) component of AI allows

models to recognize suspicious or unusual patterns in

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

3

large datasets without requiring complex

programming [4, 5]. Popular Algorithms such as

Support Vector Machine (SVM), Random Forest

(RF), and Neural Networks (NN) possess a high level

of accuracy when classifying malicious inputs using

their structural and semantic properties. Intuitively, it

seems that deep models, including Convolutional

Neural Networks (CNN) and Recurrent Neural

Networks (RNN), could specialize in contextual

embeddings and complex sequence dependencies

related to query strings. For instance, it has been

demonstrated that CNN-based detectors could identify

and capture obfuscated payloads much more

efficiently than traditional classifiers and extract

multi-level features. [6]. Therefore, by incorporating

such models, it will be feasible to develop a much

more robust and scalable system to detect SQLi.

 To further enhance the detection of SQLi attacks,

researchers have increasingly adopted Natural

Language Processing (NLP) methods alongside ML

techniques. Text representation strategies such as

Term Frequency–Inverse Document Frequency (TF-

IDF), Word2Vec, and Bidirectional Encoder

Representations from Transformers (BERT) have

proven effective in capturing the syntactic and

semantic structures of SQL queries, allowing

classifiers to better distinguish between malicious and

benign statements. These embeddings assist in

capturing contextual meaning, which is crucial for

detecting subtle injection patterns [4]. In addition,

recent studies have highlighted the advantages of

hybrid models and ensemble learning techniques that

combine multiple algorithms to enhance robustness

and accuracy, especially in identifying obfuscated

payloads and managing imbalanced datasets in real-

time environments [7, 8] .

1.1 Research gaps

 While the progress made in the studies is

commendable, the studies highlighted in the research

still showcase gaps in real world implementations of

SQL injection detection. First, there remains a strong

reliance on classical ML paired with Bag-of-Words

(BoW), and TF-IDF rather than contextual

embeddings or hybrid deep architectures, which

constrains generalization to obfuscated or previously

unseen payloads [9-11].

 Second, the input scope is frequently narrow; most

works operate on query strings or textual payloads,

with few explicitly handling richer vectors. For

example, several studies use only textual inputs or

Kaggle-style SQL query corpora without broader

protocol/context features [10, 12, 13].

 Third, evidence of online or production-grade

validation is limited: a handful demonstrate

deployment or real-time feasibility (e.g., a Flask app

or firewall and edge suitability), but most evaluations

remain offline [10, 12, 14, 15].

 Fourth, explainability is underutilized, apart from a

few works employing SHapley Additive exPlanations

(SHAP) and Local Interpretable Model-agnostic

Explanations (LIME), most models lack integrated

Explainable Artificial Intelligence (XAI) to support

auditing in security-critical settings [16, 17].

 Fifth, data limitations persist, including small or

proprietary datasets and reliance on single public

corpora, which can bias reported metrics; concrete

examples include modest-sized or single-dataset

evaluations and limited external validation [18-21].

 Finally, only a few frameworks consider multiple

web attacks (e.g., SQLi and cross-site scripting (XSS))

within a unified model, while most approaches remain

narrowly scoped to SQLi [22, 23].

1.2 Problem statement

 Although numerous studies have explored SQL

Injection detection using ML and DL techniques, the

development of robust and practically deployable

solutions remains limited. Current detection

frameworks frequently limit their analysis to query

strings or POST parameters, overlooking other

potentially exploitable vectors, including Hypertext

Transfer Protocol (HTTP) headers (e.g., User-Agent,

Cookies) and Domain Name System (DNS)-level

payloads. DL models have shown good accuracy in

controlled settings, but they can't be used in real time

because they take up too much processing power and

aren't flexible enough to handle new or hidden

payloads. This is especially true for Web Application

Firewalls (WAFs) and Intrusion Detection Systems

(IDSs).

 Furthermore, the opaque nature of numerous deep

learning architectures constrains interpretability,

inhibiting security analysts from validating or auditing

detection results, which is a crucial necessity for

security-sensitive systems. Class imbalance in SQLi

datasets skews models even more toward benign

queries, making them less sensitive to rare but

dangerous attack patterns. Lastly, many of the

proposed detection methods haven't been tested in

real-world settings, raising concerns about scalability,

operational feasibility, and long-term adaptability.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

4

1.3 Research questions

 This review tries to answer some basic questions

about the current state and future direction of SQLi

detection research.

 First, it tries to find and compare the different

machine learning (ML) and deep learning (DL)

methods that have been used to detect SQLi. It focuses

on how accurate, efficient, and useful they might be in

the real world.

 Second, the review looks at the extent to which

recent detection models being able to adapt in real

time, being able to analyze multiple input vectors, and

being able to explain themselves using XAI

techniques. Third, it looks at the big research gaps and

technical problems that still exist in the current

literature.

 Finally, it seeks to establish a compilation of optimal

practices and prospective research trajectories that can

facilitate the advancement of more resilient,

comprehensible, and scalable SQL injection detection

systems.

1.4 Research objectives
 This review provides a critical, comprehensive

synthesis of machine learning (ML) and deep learning

(DL) based SQL injection detection from peer-

reviewed studies published between 2015 and 2025.

First, it shows how model families, like classical,

deep, and hybrid, can be designed and what

preprocessing and feature-representation options they

have. Second, it looks at how well things work in real

life, with accuracy as the main way to compare them.

Third, it points out common methodological problems,

such as limited generalizability, class imbalance, XAI,

computational overhead, and real-time constraints.

Fourth, it looks at practical issues that come up when

trying to make something scalable and deploy it in a

security setting. Lastly, it puts together evidence-

based suggestions and design rules for making SQLi

detection systems that are strong, easy to understand,

and can grow to fit real-world situations like WAFs

and IDSs.

2. Research Methodology
 This review follows a set paln for reviewing

literatures. We restricted the scope to peer-reviewed

studies on SQLi detection using ML and DL published

between 2015 and 2025. We searched IEEE Xplore,

SpringerLink, MDPI, and Google Scholar using

combinations of the terms SQL injection, detection,

classification, ML, and DL. Duplicates were removed,

records were screened by title and abstract, then

assessed in full text against predefined inclusion

criteria (English, peer-reviewed, ML and DL for SQLi

with quantitative evaluation) and exclusion criteria

(non-ML approaches, no dataset or metrics, non-

English, duplicates, outside the timeframe). We

retrieved 100 records; after deduplication, 71 records

remained for title–abstract screening and full-text

assessment, of which 50 studies met the inclusion

criteria and were included in the final review. For each

included study, we extracted fields aligned with our

summary table: Authors, Objective, Method,

Accuracy (was employed as the primary evaluation

metric to assess the performance of the applied

models. Accuracy is formally defined as the

proportion of correctly classified instances (both

attack and benign queries) over the total number of

instances, as shown in Equation (1):

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

where 𝑇𝑃 denotes true positives, 𝑇𝑁 true negatives,

𝐹𝑃 false positives, and 𝐹𝑁 false negatives. A higher

accuracy value indicates that the model can correctly

distinguish between malicious and legitimate SQL

queries with greater reliability [30]), Strength Points,

and Limitations, and complementary details (model

family, preprocessing and feature representation, use

of explainability, and any deployment or real-time

evidence such as Flask, microservices, or firewall or

edge settings). Owing to heterogeneity across datasets

and experimental setups, findings were synthesized

narratively, grouped by model family and

representation choice; no reimplementation or

additional quantitative testing was performed.

3. Related Work

 Prior research on SQL injection detection spans two

broad strands: classical machine-learning pipelines

driven by handcrafted textual features, and deep and

hybrid architectures that learn hierarchical or

contextual representations directly from payloads.

 Classical ML with handcrafted features. Numerous

studies rely on BoW and TF-IDF (or variants such as

Improved Term Frequency–Inverse Document

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

5

Frequency(ITFIDF)) with classifiers including SVM,

Logistic Regression (LR), Naive Bayes (NB), k-

Nearest Neighbors (KNN), Decision Tree (DT), RF,

and boosted ensembles, often reporting competitive

accuracy under controlled settings [9, 15, 24, 25].

 Work has also examined data imbalance and

sampling effects on SQLi detection performance,

highlighting the sensitivity of results to class skew and

evaluation protocol [8]. Feature-selection methods

also appear in several papers to streamline models or

improve generalization [18, 20, 26].

 Deep and hybrid models. CNN-based detectors

trained on network or HTTP payloads have shown

strong results without manual feature engineering [27,

28], while hybrids combining CNN with Bidirectional

Long Short-Term Memory(BiLSTM) capture both

local n-gram patterns and long-range dependencies

[13, 22, 29].

 Representation-learning approaches include

autoencoder-derived features used with downstream

classifiers [30]

 Deep Forest as a non-neural deep alternative [31].

Lightweight attention models designed for low-

latency inference [12].

 Contextual and sentence-level embeddings. Several

works move beyond sparse vectors toward dense,

semantics-aware representations. Comparative studies

evaluate contextualized embeddings against BoW and

TF-IDF with classical learners [5], while BERT-based

or BERT-hybrid architectures (e.g., BERT–LSTM,

Syntactic Bidirectional Encoder Representations from

Transformers(synBERT)) aim to capture obfuscation-

resilient semantics at the token or sentence level [23,

32-35].

 Explainability and deployment aspects. A subset of

studies integrates XAI tooling, such as SHAP or

LIME, to enhance the auditability of model decisions,

particularly in operational settings [16, 17].

 On the deployment side, prior work demonstrates

practical prototypes or settings including Flask-based

applications, microservice-oriented designs, and

firewall, edge-style integrations, indicating a path

from offline evaluation to applied use cases [10, 12,

14, 15, 36]. Other efforts aggregate multi-source

traffic or Internet Service Provider(ISP) data to

approximate realistic conditions [37-39].

 Beyond a single-attack scope. While much of the

literature targets SQLi specifically, some frameworks

broaden the scope to multiple web threats (e.g., joint

SQLi and XSS detection) or related query-injection

families, underscoring the importance of generalizable

defenses in heterogeneous environments [15, 22, 35].

 Fig. 3 Conceptual pipeline summarizing the main

stages of SQL injection detection techniques, based on

prior research themes including feature extraction,

imbalance handling, classification, explainability, and

deployment.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

6

Fig. 3. Conceptual workflow of SQL injection detection

researches .

Table 1. Summary of related works evaluation.

presents a focused comparison of selected

representative studies from the reviewed literature.

Each entry highlights the key technique used by the

authors and outlines the most critical limitations of

their proposed approaches. This table aims to

emphasize not only the methodological contributions

but also the gaps that hinder real-world applicability,

such as a lack of explainability, the absence of feature

selection or hybridization, and limited scalability or

deployment.

 Fig. 3 Conceptual pipeline summarizing the main

stages of SQL injection detection techniques, based on

prior research themes including feature extraction,

imbalance handling, classification, explainability, and

deployment.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

7

Fig. 3. Conceptual workflow of SQL injection detection researches .

Table 1. Summary of related works evaluation.

Author Objective Method
Accura

cy
Strength Points Limitation

)Chen et

al.2021)

[1]

To develop DL

based SQLi

detection model

that avoids rule-

based systems.

Preprocessed HTTP traffic

through recursive decoding and

generalization, then applied

Word2Vec for embedding; trained

CNN and Multilayer

Perceptron(MLP) models;

evaluated using confusion

matrices and F1-score .

98.58%

Combines NLP and

DL; effective use of

Word2Vec, CNN, and

MLP; evaluated on real

HTTP data with

detailed metrics .

Focuses only on first-order

SQLi; limited to offline

evaluation; second-order

and hybrid SQLi attacks

not addressed .

)Farooq.

2021([4]

To develop an

effective SQL

injection detection

system using

Created a labeled dataset of

35,198 queries (normal,

malicious, plain text) with 21

statistical and semantic features.

99.34%

Manually constructed,

balanced, and labeled

dataset with detailed

feature engineering;

No DL models used,

dataset limited to

structured queries;

performance in real-world

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

8

ensemble ML

techniques and a

manually

constructed feature-

rich dataset .

Applied four ensemble classifiers

(Gradient Boosting

Machine(GBM), Adaptive

Boosting(AdaBoost), Extreme

Gradient Boosting(XGBoost),

Light Gradient Boosting

Machine(LGBM)) and evaluated

using 3-fold and 5-fold cross-

validation.

extensive evaluation

using multiple metrics,

comparative analysis

with prior methods

showed improvement.

unstructured web logs not

tested.

(Zulu et

al.2024)[

5]

Compare

contextualized vs.

non-contextualized

word embeddings

for SQLi detection

using ML models

Applied BoW and Robustly

Optimized BERT Pretraining

Approach (RoBERTa).

embeddings; trained MLP, RF,

KNN, and LR classifiers on

Kaggle SQLi dataset

above

99%

High accuracy across

models, significant

reduction in training

time, better model

calibration with

contextual embeddings

Training excludes

pretraining cost of

RoBERTa; higher memory

needed for RoBERTa

embeddings; BoW models

consumed high memory

and showed poor

generalization in some

classifiers

(Zuech et

al 2021)

[8]

Investigate the

impact of extreme

class imbalance and

rarity on the

detection of SQL

Injection web

attacks in the CSE-

CIC-IDS2018

dataset.

Evaluated 7 classifiers (DT, RF,

LGB, XGBoost, Categorical

Boosting (CatBoost), NB, LR)

across different Random Under-

Sampling (RUS) random

undersampling) ratios; Used

stratified 5-fold CV repeated 10

times (total 2800 runs); Statistical

analysis via Analysis of

Variance(ANOVA) and Tukey's

HSD.

-

Rigorous data

preparation; Deep

statistical validation;

Explored classifier and

sampling interactions;

First to deeply analyze

SQLi rarity in CSE-

CIC-IDS2018.

Did not explore

oversampling or hybrid

sampling; Only focused on

Area Under the

Curve(AUC) metric;

Evaluation limited to SQL

Injection attacks only from

two days in the dataset.

(Pramon

o et al,

2024).[9]

Compare the

effectiveness of NB

and SVM in

classifying SQLi.

Preprocessing TF-IDF and NB vs.

SVM using the labeled Kaggle

dataset .

96.67%

Simple yet effective

comparison; tested 3

data split scenarios .

Limited to Kaggle dataset;

does not apply ensemble or

DL methods.

)Ahmed

et

al.2021)

[10]

Detect SQL and

NoSQL injection

attacks using a

hybrid two-layer

firewall.

Layer 1: Pattern matching. Layer

2: ML classifiers (SVM, DT,

AdaBoost, RF, LR, NB),

Synthetic Minority Over-

sampling Technique with Edited

Nearest

Neighbors)SMOTEENN(,

GridSearchCV.

100%

Real-time firewall;

high accuracy; handles

both SQL and NoSQL;

dataset published.

Only textual input; limited

NoSQL samples; no file

support; no DL used.

(Ahmed

and

Uddin

2020)

[11]

To enhance SQL

injection detection

accuracy using ML

and NLP

techniques.

Collected SQLi and normal

payloads using tools such as

LibInjection and SQLMap; used

token pattern via regex and

CountVectorizer to extract BoW

features; applied RF classifier

with bagging; compared with DT,

NB, SVM, and KNN.

98.15%

Integrated NLP-based

BoW feature

extraction, large

dataset, high

classification metrics,

and robust comparison

with four classifiers.

Limited to classical ML,

lacks DL or word

embedding; no real-time or

online system evaluation

implemented.

(Lo et

al.2025)

[12]

Develop a

lightweight and

efficient neural

network model for

SQL injection

detection.

SQL-specific tokenizer using

command expression and symbol

categories combined with CNN

and multi-head self-attention,

followed by a sigmoid output

layer trained on the Kaggle SQL

injection dataset.

98.98%

Compact model with

69,269 parameters, fast

inference suitable for

edge devices,

competitive with large

pretrained models like

A Lite

Slightly lower accuracy

than DistilBERT and

Efficiently Learning an

Encoder that Classifies

Token Replacements

Accurately

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

9

BERT)ALBERT(and

Distilled

BERT)DistilBxERT(.

)ELECTRA(, limited to

SQL injection detection,

depends on the quality of

the SQL-specific

tokenizer.

)Gandhi

et

al.2021)

[13]

To develop a hybrid

CNN-BiLSTM

model for accurate

detection of SQL

injection attacks.

4200 labeled queries processed

through cleaning, tokenization,

and embedding, classified using

CNN for feature extraction and

Bi-LSTM for sequence modeling.

98%

High detection

accuracy, effective

hybrid architecture,

robust comparison with

multiple models.

Moderate execution time,

limited dataset size, no

discussion of real-time

deployment or adversarial

threats.

(Ogini, et

al.2022)

[14]

To develop a DL

based Feed-

Forward Neural

Network)FFNN(

model for detecting

SQL injection

attacks.

Used a dataset of 30,635 SQL

queries from Kaggle.

Preprocessed with

CountVectorizer and TF-IDF.

Trained FFNN in TensorFlow,

Keras, over 20 epochs, and

deployed using Flask.

97.65%

High detection

accuracy; real-time

Flask deployment;

thorough

preprocessing.

Limited to FFNN; only

evaluated on Kaggle data;

no hybrid model

comparison or overfitting

discussion.

)Pallam

et

al.2021)

[15]

Detect SQLi &

XSS using ML

ensemble methods.

Used TF-IDF with LGBM,

AdaBoost, XGBoost , and GBM;

deployed on a Flask app.

99.59%

Practical deployment,

high accuracy, and an

IP ban feature.

Limited XSS data; no real-

time and adversarial

testing.

(Kakisim

2024)

[16]

To improve SQL

injection (SQLi)

detection using a

DL system

leveraging multiple

semantic

representations.

Introduced Multi-View

Convolution-Bidirectional

Convolutional Neural

Network(MVC-BiCNN),

combining BiLSTM and CNN;

applied multi-view learning with

tokenized, converted, and

enriched representations; used 21

semantic tags; evaluated on 5

datasets.

99.96%

Effective multi-view

consensus strategy;

strong generalization

across datasets; robust

feature representation;

XAI explainability with

LIME.

Focused only on SQLi;

does not address XSS or

other web attacks; limited

real-time deployment

evaluation.

(Le et al.,

2024).[1

7]

Compare ensemble

and boosting

models and enhance

SQLi detection

transparency using

SHAP and LIME .

Trained DT, RF, XGBoost,

AdaBoost, Gradient Boosting

Decision Tree(GBDT), and

Histogram-based Gradient

Boosting Decision Tree(HGBDT)

on an SQL injection dataset;

evaluated using accuracy, F1-

score, SHAP, and LIME

explainability techniques.

99.50%

High detection

accuracy;

explainability through

SHAP and LIME;

suitable for real-world

deployment; thorough

comparative evaluation

of multiple models .

SHAP is computationally

expensive; XGBoost

showed limited

performance in this use

case; evaluation was

limited to a controlled

dataset, not real-time or

adversarial settings.

(Alarfaj

& Khan

2023).[1

8]

To enhance the

detection

performance of

SQL injection

attacks using DL

A Probabilistic Neural Network

(PNN) optimized via the BAT

algorithm; features were extracted

using tokenization and regular

expressions, and selected via Chi-

Square test. The dataset included

6000 SQLi and 3500 benign

queries. Evaluated using 10-fold

cross-validation and compared

with SVM, Artificial Neural

Network(ANN), and DT.

99.19%

Utilized an

optimization algorithm,

BAT, to fine-tune the

smoothing parameter;

high detection

accuracy;

comprehensive

evaluation with

multiple classifiers and

validation setups.

High model complexity;

sensitivity to noisy or

irrelevant features; a

custom dataset may limit

generalizability.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

10

)Hernaw

an et al,

2020)

[19]

To prevent SQL

Injection attacks

using a hybrid

intelligent detection

system.

A hybrid model combining SQL

Injection Free Secure (SQL-IF)

and NB, implemented as a proxy .

90%

Integrates pattern

matching and ML;

works as a real-time

proxy; evaluated using

real attacks.

Increased web load time

due to dual processing;

dataset limited to 250

queries; lacks external

validation.

(Arasteh

et

al.2024)

[20]

Improve SQL

injection detection

by selecting optimal

features and

classification

techniques.

Developed a Binary Olympiad

Optimization Algorithm (BOOA)

for feature selection; trained

classifiers (ANN, DT, SVM,

KNN) on 13 numerical features;

compared performance with and

without BOOA-selected features.

99.35

Effective feature

reduction boosting

accuracy; high stability

across runs;

combination of BOOA

and ANN yields top

performance.

Does not explore DL;

limited to a modest dataset

size; only 13 hand-

engineered features used.

(Alghaw

azi et

al.2023)

[21]

To develop an RNN

autoencoder

architecture for

detecting SQL

injection attacks .

They trained an RNN autoencoder

consisting of an encoder–decoder

pair to compress and reconstruct

SQL queries and added an LSTM-

based classifier on the encoded

representations.

94%

The architecture

captures sequential

patterns effectively and

was benchmarked

against seven other

classifiers .

Evaluation used a single

public dataset, without

real-world deployment or

larger, more diverse data

samples.

(Tadhani

et

al.2024)

[22]

Develop a unified

DL model to detect

both SQLi and XSS

web attacks

effectively.

Hybrid CNN–LSTM model with

preprocessing (decoding,

standardization, tokenization) and

Word2Vec embedding.

99.84%

Unified model detects

multiple attack types;

high accuracy across

three datasets; effective

preprocessing and

embedding strategy.

High training time;

performance may be

dataset-dependent; not

tested on other attack types

like Zero-day or phishing.

(Bakır

2025)

[23]

Unified detection of

XSS and SQL

injection using

fused embeddings.

UniEmbed: fuse Universal

Sentence Encoder(USE) sentence-

level, Word2Vec word-level,

FastText subword-level; train ML

classifiers LR, SVM, GNB, DT,

KNN, MLP, RF; use hard voting

and soft voting.

99.82%

Multi-level feature

fusion yields top

performance;

consistent results

across datasets and

classifiers; efficient

inference.

Tested only on benchmark

datasets; no live

deployment; limited to text

inputs; not evaluated on

novel attack types.

(Li &

Bin

2019)

[24]

To enhance SQL

injection attack

detection by

improving the

traditional TF-IDF

algorithm through

distribution-aware

feature weighting.

Proposed an ITFIDF algorithm

considering feature distribution

across SQL statement types,

extracted 34 features including

keyword frequency and ITFIDF

of 32 sensitive characters, used

SVM for classification, and

compared against existing

methods and classifiers.(KNN and

DT).

99.08%

Higher feature

representation

accuracy, superior

classification

performance with

SVM, and improved

metrics over baseline

methods.

Limited dataset diversity,

no real-time system

evaluation, lacks

contextual or semantic

analysis of SQL

statements.

(Zhang

et

al.2022)

[25]

Propose a deep

neural network

(SQLNN) for

accurate SQL

injection detection.

SQL Neural Network (SQLNN)

model using TF-IDF for feature

extraction, Rectified Linear

Unit(ReLU) activation, Adam

optimizer, and Dropout

regularization; compared with

KNN, DT, and LSTM .

96.16%

Integrates DL with

automated feature

extraction, avoids

overfitting using

Dropout, robust against

evasion attacks .

Lacks real-time

deployment validation;

relies on a single dataset

from Kaggle .

(Purbawa

et

al.2023)

[26]

Enhance detection

accuracy of SQLi

using an ML

ensemble .

Preprocessing (stemming,

lemmatization, TF-IDF), models:

LR, LDA, GNB, RF, and Voting

Classifier (soft voting).

97.07%

Combined multiple ML

algorithms with feature

selection (ANOVA)

and vectorization (TF-

IDF), using Kaggle

data.

Limited to classical ML

models only, no

comparison with DL, used

only one small dataset

version.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

11

(Shahbaz

et al,

2024).[2

7]

To propose a CNN-

based model for

detecting SQL

injection attacks

without manual

feature engineering .

Built a CNN model trained on a

dataset of 109,520 SQL queries

(80% train, 20% test) using

embedding, with one-dimensional

convolution (Conv1D), pooling,

and dense layers for feature

extraction and classification.

98.16%

High detection

accuracy; automatic

feature learning;

minimized false

positives and negatives.

Requires diverse data; high

computational resources;

slightly lower performance

on malicious queries

(FN=484).

(Luo et

al.2019)

[28]

To detect SQL

injection attacks

using a CNN-based

model and compare

it with traditional

rule-based

detection .

Collected SQL injection payloads

from real HTTP traffic, applied

data sanitization and vectorization

using Gensim, and trained a CNN

model consisting of three

convolutional and pooling layers

with a fully connected and hidden

layer .

99.50%

Utilized real-world

traffic, applied

thorough

preprocessing, and

demonstrated

robustness against

obfuscated attacks .

Focused only on CNN

without comparing other

DL models, limited to

binary classification, and

lacked broader dataset

diversity.

(Alsham

mari

2023)

[29]

To evaluate and

compare the

performance of

ANNs, CNNs, and

RNNs for detecting

SQL injection

attacks .

Applied ANN with TF-IDF

vectors, CNN with embedding,

convolution, pooling, and RNN

with LSTM on SQL query

dataset .

99.70%

Clear comparison

between different

neural network

architectures using the

same dataset and

evaluation metrics.

Limited dataset; no real-

world deployment; lacks

comparison with

traditional ML or hybrid

models.

)Thalji et

al. 2023)

[30]

To develop an

automated, AI-

based method for

detecting SQLi

attacks without

human intervention.

Proposed Autoencoder Network

(AE-Net) to extract high-level

deep features from SQL queries.

Evaluated with ML and DL

models: KNN, LR, RF, XGBoost

(for BoW & TF-IDF), and KNN,

RF, XGBoost, LSTM (for AE-Net

features). Hyperparameter tuning

and k-fold validation applied.

99%

Novel deep features

improved detection;

robust evaluation .

LSTM underperformed;

high runtime for XGBoost;

no real-time Graphical

User Interface(GUI) .

(Q. Li et

al. 2019)

[31]

Propose an

effective SQLi

detection method

for complex

environments.

Adaptive Deep Forest (ADF) with

AdaBoost uses multi-grained

scanning and cascade forest

architecture .

98.00%

Automatically adjusts

parameters; low

overfitting; high

accuracy with small

datasets; better than

Deep Neural

Network(DNN) and

ML models.

Slightly outperformed by

DNN when training

samples exceed 16,000;

limited dataset diversity.

)Liu and

Dai

2024([32

]

Propose a hybrid

BERT–LSTM

model for detecting

SQLi attacks.

BERT for contextual embeddings,

and LSTM for sequence

modeling. Dataset: HttpParams

(30,156 samples).

97.3%

High accuracy; robust

to obfuscation;

effective semantic

modeling.

Limited performance on

encoded/XSS attacks;

needs decoder integration.

(Lu et al

2023).[3

3]

Propose an accurate

and generalizable

model for SQL

injection detection.

Developed synBERT, a semantic

learning-based model that embeds

SQL statement semantics; trained

and evaluated on multiple

datasets .

99.74%

Introduces semantic

understanding via

syntax trees; strong

generalization, BERT-

based deep

architecture .

Missing details on dataset

balance and real-world

scalability; limited ablation

and interpretability

analysis.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

12

(Sun et

al.2023)

[34]

To propose a DL-

based detection

method for SQL

injection attacks .

Employed an enhanced TextCNN

for local feature extraction,

followed by Bi-LSTM for

sequential learning. Integrated an

attention mechanism to improve

long-sequence handling and

incorporated BERT for transfer

learning .

above

99.57%

A combination of

CNN, Bi-LSTM,

attention, and BERT;

effective for complex

and evolving SQLi

patterns.

Dataset type and size not

specified; lacks exact

metrics (e.g., accuracy, F1-

score); not validated in

real-world deployment .

(Devalla

et al.

2022)

[35]

To detect SQLi,

NoSQLi, and

malicious URL

attacks using

intelligent models,

including ML and

DL methods.

Proposed the mURLi tool

integrating RF, KNN, XGBoost,

AdaBoost, ANN, BiLSTM, and

BERT; applied feature

engineering and Synthetic

Minority Over-sampling

Technique)SMOTE(balancing.

99.84%

Extensive feature

engineering, effective

model comparison,

strong BERT

performance on textual

inputs, and effective

SMOTE application.

A small NoSQLi dataset

reduced BiLSTM

accuracy; BERT

underperformed on a

numeric-based malicious

URL dataset.

)Garcia,

et

al.2024)

[36]

To compare ML

algorithms for SQLi

detection in web

microservices .

Trained SVM, RF, and DT using

TF-IDF and CountVectorizer;

deployed in a microservices-based

architecture .

99%,

Realistic microservices

deployment; balanced

dataset; high detection

performance; practical

evaluation .

Limited prior studies on

SQLi in microservices;

challenges in handling

complex query structures;

not tested in real-time

adversarial settings.

)Tang et

al.2020([

37]

To develop a neural

network-based

model for accurate

SQL injection

detection using both

statistical and

sequential URL

features.

Extracted 8 statistical features for

MLP and used American

Standard Code for Information

Interchange(ASCII)-encoded

sequences for LSTM; models

trained using PyTorch .

99.67%

Proposed dual-model

comparison using both

MLP (fast, feature-

based) and LSTM

(sequential, scalable);

real ISP data used .

LSTM showed lower

accuracy and significantly

higher detection time;

ASCII encoding limited

the distinction between

characters .

(Ross et

al.2018)

[38]

Propose a multi-

source data analysis

system to improve

SQL Injection

detection accuracy .

Designed a vulnerable enterprise

chat web application; captured

HTTP and MySQL traffic using

Snort and Datiphy appliances;

generated normal and attack

traffic (manual SQLi and

SQLMap); used Waikato

Environment for Knowledge

Analysis (WEKA(with feature

selection (Correlation-based

Feature Selection(CFS) and

Genetic Search); evaluated

classifiers (JRip, J48, RF, SVM,

ANN) on three datasets: Webapp,

Datiphy, and Correlated.

98.06%

Multi-source data

improves detection,

systematic feature

selection, detailed time

and performance

metrics.

Simulated dataset (not

real-world traffic); ANN is

accurate but slow; no

generalization to other

attack types yet .

(Daramol

a et

al.2025)

[39]

Proactive detection

and classification of

malicious SQL

queries .

Collected & preprocessed 88,213

labeled queries; engineered

features (entropy, keywords,

tokenization); trained and

compared RF, MLP, SVM, NB.

98.4%,

Very large, diverse

dataset; end-to-end

pipeline; comparative

evaluation of four ML

models; open data .

No hyperparameter tuning;

limited to SQLi; not

evaluated on non-SQLi

attacks or real-time

deployment.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

13

(Muham

mad et

al.2022)

[40]

To implement

predictive analytics

for detecting and

classifying SQL

injection attacks

using ML

classifiers.

Multiple ML algorithms (LR,

Sequential Minimal Optimization

(SMO), J48, Instance-Based K

(IBK), Stochastic Gradient

Descent (SDG), NB, and

Bayesian Network

Classifier(BNK)) were trained

and evaluated using WEKA with

10-fold cross-validation and hold-

out. Features extracted from

Damn Vulnerable Web

Application(DVWA) access logs.

98.77%

Comprehensive metric-

based evaluation;

realistic simulation

environment; robust

model via hybrid

detection.

Limited dataset size from

DVWA; lacks real-time

detection; no use of

contextual embeddings .

)Triloka

et

al.2022)

[41]

To detect SQLi

attacks using ML

and NLP-based

feature engineering .

Tested five classifiers (SVM,

KNN, LR, GB, NB) using text-

based features and corpus

processing with Python NLTK .

99.77%

Used dual datasets

(training and

challenge), NLP-based

preprocessing,

evaluated Time of

Process, and accuracy .

Limited to specific corpus

parameters; real-world

generalizability not

validated .

(Hirani

et

al.2020)

[42]

To detect and

compare SQLi

attack detection

performance across

CNN and

traditional ML

algorithms.

Compiled a dataset with various

SQLi types (union, blind, error-

based); preprocessed and labeled

payloads; evaluated DT, NB,

SVM, KNN, and CNN classifiers.

94.84%

Wide dataset coverage,

including multiple

database(DB) types;

strong CNN

performance; thorough

comparison with four

ML models; robust

metric analysis.

Architecture details of

CNN not provided; dataset

size not explicitly stated;

real-time deployment and

generalizability not

evaluated

(Li et al

2019)

[43]

To develop an

effective SQL

injection detection

method tailored for

intelligent

transportation

systems using DL.

Proposed an LSTM-based

classifier combined with a SQL

injection sample generation

method to address data imbalance

and overfitting. Word2Vec was

used for feature embedding. The

model was trained and evaluated

on six datasets (DS1–DS6).

93.47%

Automatic feature

learning via LSTM,

effective positive

sample generation

reduced overfitting;

strong generalization

and high accuracy.

Generated samples may

not cover all real-world

SQLi variations; limited

validation in diverse real-

world deployment

environments.

(Jothi et

al 2021)

[44]

To design an

efficient SQL

injection detection

system using DL.

Used an MLP model with an

embedding layer trained on SQLi

queries from the Lib-Injection

dataset and normal plain text.

Data preprocessing included

tokenization, stop-word removal,

lemmatization, character filtering,

word indexing, and padding.

98%

The model can detect

all types of SQL

injection attacks, does

not rely on manually

defined features,

supports generalization,

and can be extended to

URL-based input

detection .

The model does not use n-

gram features, which limits

its understanding of

sentence context,

potentially causing

misclassification in rare

cases .

(Ladole

and

Phalke

2016)

[45]

To detect SQL

Injection attacks

and classify users

(normal or attacker)

based on queries.

Query tree generation using

PostgreSQL logs; feature

extraction via Fisher Score;

classification via SVM

implemented through the WEKA

library.

94.12%

Utilized structural

query trees for better

detection; combined

query analysis with

user behavior

classification.

Evaluation on a limited

dataset lacks DL models;

only binary classification.

(Hasan et

al. 2019)

[46]

To develop an

intelligent system

for detecting SQL

injection attacks

using ML

techniques and

Evaluated 23 ML classifiers using

MATLAB; selected the top five

based on accuracy. Collected SQL

statement datasets from

w3schools and OWASP.

Extracted numerical features for

93.8%

Comprehensive

evaluation of multiple

classifiers, integration

of a user-friendly GUI,

and high detection

Limited number of benign

(non-injected) statements

affected overall accuracy,

relied on basic numerical

features, and the system

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

14

enhance detection

accuracy via a GUI

interface.

classification and implemented a

GUI-based detection system.

accuracy for injected

queries.

was not validated in a real-

world environment.

(Sommer

voll et al.

2024)

[47]

Develop RL agents

to simulate all types

of SQL injection.

Trained Q-learning agents in a

synthetic environment with 5

SQLi types and improved

preprocessing.

96%

Covers all SQLi types;

enables transfer

learning; reduces

expert input; realistic

simulation .

Lower accuracy in

uncertain cases; Q-learning

scalability limits; synthetic

setup lacks real-world

complexity.

(Ismail et

al.,

2024)

[48]

To identify a

lightweight ML

model for detecting

cyber-attacks in

blockchain-enabled

industrial supply

chains.

Compared NB, KNN, RF, DT,

Bagging, Stacking, and CatBoost

on the WUSTL-IIOT-2021

dataset using Mutual Information

(MI) and Extra-trees (ET) for

feature selection and

undersampling for class balance.

-

Stacking outperformed

in most metrics;

CatBoost had highest

precision; NB was

fastest to train, DT

fastest to predict.

Stacking had high training

time; the study focused on

only four types of attacks,

and no DL models were

included for comparison.

)Muduli

et al.

2024)

[49]

Develop two

customized

convolutional

neural network

models (SIDNet-1

and SIDNet-2) for

high-accuracy SQL

injection detection

and prevention,

with the ability to

integrate into web

protection systems.

Utilized datasets containing both

benign and malicious SQL

queries, converting them into

numeric arrays (64×64×1),

followed by a multi-layer CNN

architecture (convolutional,

MaxPooling, Dropout, Dense).

SIDNet-2 includes additional

Dropout layers after each

convolutional and pooling to

improve generalization.

Performance compared with ML

models (SVM, KNN, DT, NB)

and previous DL models.

98.02%

Custom architecture

tailored for SQL data,

incorporation of

generalization

improvement strategies

(Dropout), deployable

in WAF or post-

firewall, supports

continuous learning to

adapt to evolving

threats.

Not tested extensively in

real-world environments,

did not evaluate other web

attacks (e.g., XSS),

performance depends on

the quality and diversity of

the dataset.

)Abaimo

v and

Bianchi,

2019)

[50]

Detect code-

injection attacks

(SQL and XSS)

with DL.

CNN with a tailored pre-

processing stage that encodes

symbols as type and value pairs;

local search to optimize network

configuration; optional static

signature check.

Up to

94%

Reduces training

requirements through

semantic encoding;

modular and easily

reconfigurable

framework.

Relies on domain-specific

pre-processing knowledge;

performance varies with

data and necessitates

retraining when data

distributions change.

(Kim et

al. 2020)

[51]

Apply DL (CNN-

LSTM with

normalized

Unicode

Transformation

Format – 8-bit)

UTF-8(encoding of

spatial features) to

detect unknown or

obfuscated web

attacks and to

improve Snort rules

in real time.

Run a signature NIDS (Snort) in

parallel with a Traffic Analysis

System; learn on HTTP payloads

at the application layer; fast

preprocessing via UTF-8

encoding; CNN-LSTM model

tuned for scalability (Docker).

93%

Detects encoded or

obfuscated payloads

that Snort misses;

assists in authoring and

refining Snort rules

(approximately five

new rules per month)

while avoiding

duplicates; flexible,

scalable design with

daily labeling for

continual retraining.

Requires analyst

verification initially due to

false positives; public

benchmark sets are small,

which can induce

overfitting; focuses on

HTTP and excludes Secure

Sockets Layer(SSL) and

User Datagram Protocol

(UDP); depends on high-

quality labeled data.

 The fifty studies reviewed show how SQL injection

detection has changed from traditional machine-

learning pipelines with hand-crafted features to deep

and hybrid architectures that can learn contextual or

hierarchical representations directly from payloads.

Classical methods, mainly using BoW, TF-IDF, or

similar methods like ITFIDF with classifiers like

SVM, RF, and LR, still work well in controlled

settings [9, 15, 24, 25], but they are often specific to one

dataset and can't handle inputs that are hidden or meant

to trick the system. Deep learning techniques,

especially CNN, Bi-LSTM, and their hybrids [13, 21,

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

15

27, 34], can extract features and model sequences

better, but they may need more computing power,

which makes them less useful in real time. Contextual

embeddings, such as BERT-based variants [5, 12, 33,

35], improve semantic resilience but still have

problems with memory efficiency and inference

latency.

 From a deployment perspective, only a subset of

work transitions from offline experiments to

operational prototypes. Examples include Flask-based

services [14, 15], and firewall or edge-device

integrations [10, 12, 49], highlighting a persistent gap

in real-world validation. Similarly, explainability via

SHAP or LIME is present in select studies [16, 17], but

remains underutilized, reducing auditability in

security-critical contexts. Data-related constraints are

also prevalent, with many evaluations relying on

small, single-source, or synthetic datasets [26, 31, 35],

undermining generalizability. Furthermore, multi-

attack detection frameworks remain rare, with most

solutions narrowly scoped to SQLi [42, 44, 47] .

 These patterns underscore the primary gaps

addressed by the present work: employing enriched

and multi-source feature representations to improve

robustness across diverse payload formats, integrating

deep contextual modeling with resource-aware design

to balance accuracy and deployment feasibility,

embedding explainability into the detection pipeline

for enhanced transparency, and extending detection

capabilities to broader web-attack families within a

unified, real-time framework.

4. Results and Discussion
The included studies report high accuracies under

controlled evaluations across classical ML pipelines,

deep and hybrid architectures, and contextual-

embedding approaches. Classical NLP and ML

baselines can be strong: TF-IDF and other NLP

features with NB and SVM or ensembles reach 96–

99% in several works, including 99.77% with NLP-

based preprocessing and multiple classical classifiers,

and 98.15% with BoW and RF against four ML

baselines [11]

 Deep-learning advances show comparable or higher

performance while reducing manual feature

engineering. Pure CNN detectors achieve 98.16% and

99.50% on large or real-traffic datasets [27, 28],

whereas a CNN–BiLSTM hybrid reaches 98% on

labeled queries [13]. A lightweight CNN with multi-

head self-attention attains 98.98% with 69,269

parameters and fast inference suitable for edge devices

[12].

 Contextual and sentence-level semantics further

improve robustness. A BERT–LSTM hybrid reports

97.3% on HttpParams [32]; synBERT reaches 99.74%

with semantic learning [33], and a TextCNN followed

by Bi-LSTM with an attention mechanism exceeds

99.57% [34]. Comparative work finds that

contextualized embeddings deliver over 99% accuracy

with better calibration and reduced training time,

although they require more memory and typically

exclude the pretraining cost [5].

 Evidence of practical deployment exists but remains

limited. Examples include a Flask-based ensemble

system [15]. , microservice-oriented deployment with

TF-IDF and CountVectorizer [36], and a two-layer

firewall combining pattern matching with ML [10],

The lightweight attention model targets edge scenarios

[12]. However, many studies still lack online

evaluation or adversarial testing.

 On explainability, one ensemble study integrates

SHAP and LIME with 99.50% accuracy, supporting

auditability, although such tooling is not yet

widespread [17].

 Recurring limitations include small or single-source

datasets, scarce external or real-time validation, and

computational demands for some deep models.

Reported issues include limited or simulated data,

missing dataset details, resource requirements, or

slightly lower performance on certain malicious

subsets [12, 15, 41].

 Ranking summary. Contextual-embedding and

BERT-hybrid methods generally top accuracy (often

99%) [5, 33, 34]; CNN and BiLSTM hybrids follow

closely (98–99.5%) [13, 27, 28]; classical TF-IDF and

BoW pipelines provide strong baselines (96–99%)

with lower complexity[9, 11, 25].

 Accuracy complexity trade-off. Contextual

embeddings improve calibration but increase memory

footprint [5]; lightweight attention models trade a

minor accuracy margin for fast edge-side inference

[12].

5. Conclusion
 This review indicates that SQL injection detection

attains high performance across three main families of

approaches: classical pipelines based on textual

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

16

representations, such as TF-IDF [9, 25, 36]; deep and

hybrid models built on convolutional and recurrent

networks, including CNN and CNN–BiLSTM [13, 27,

28]; and contextual-embedding and modern language–

representation methods [5, 33, 34].

 In general, contextual approaches lead in accuracy

but require more memory [5], lightweight attention-

and CNN-based models are better suited to edge, low-

latency scenarios [12], and classical pipelines remain

strong, low-complexity baselines[11].

 Deployability is evident yet still limited: examples

include Flask-based prototypes [15]. , microservice-

oriented deployments [36], and firewall or edge

integrations [10, 12]. Nevertheless, live-traffic

evaluation and adversarial testing remain scarce [10,

12, 15] Explainability is only sparsely adopted [17], and

dataset constraints together with heterogeneous

protocols hinder external validity [12, 15, 41].

 Operational notes. In terms of computational

complexity, a lightweight attention model contains

about 69,269 parameters with fast inference

appropriate for edge devices [12]. Contextual

embeddings generally increase memory requirements,

and pretraining cost is typically not included in

reported training time [5]; BoW representations can

also inflate memory as vocabularies grow [5].

Regarding error profiles, one CNN study reported a

notable number of false negatives on the malicious

subset, underscoring the need for careful threshold

calibration to balance missed attacks against false

alarms [27]. On the resource side, deployments span

traditional servers via Flask [15], cloud microservices

[36], firewall-style integrations [10], and edge

execution for lightweight models [12].

6. Limitations
 While this literature review comprehensively

synthesizes fifty peer-reviewed studies on SQL

injection detection using ML and DL techniques,

several constraints remain: In terms of the review’s

scope, it has to be noted that the literature review only

covers studies published between the years 2015 and

2025, and only within the bounds of reputable, peer-

reviewed journals, including IEEE, Springer, Elsevier,

ACM, and MDPI. While some relevant indexed

literature may be grey and non-published, which holds

some relevant emerging perspectives, these have also

been excluded. This review also focuses on SQLi

specifically, including only studies where SQLi was

the primary focus. Research concerning broader web-

attack detection was left out, unless SQLi was

explicitly considered, which may lead to the omission

of relevant methodology found within adjacent fields,

including Cross-Site Scripting (XSS) or Denial of

Service (DoS). This review also relies on the measures

provided within the studies. The review may be able

to generate an analysis based on performance metrics

and methodological attributes provided by authors, but

any inconsistencies concerning reporting standards or

dataset descriptions may impact the comparison of

results across the studies. There is also the question of

pace concerning the fast movement of AI-driven

security research, where the relevant techniques or

datasets may outpace the review’s closing date,

leading to revisions of some of the trends or gaps that

have been identified.

7. Future Work.
 Firstly, broadening inclusion criteria to incorporate

high-quality but non-indexed sources, technical

reports, and industry white papers to capture state-of-

practice alongside academic research.

 Second, extending the scope to multi-attack detection

literature to identify architectures adaptable beyond

SQLi.

 Third, conducting a meta-analysis to statistically

compare performance across studies and identify

effect sizes of different feature extraction or model

types.

References

[1] D. Chen et al., “SQL injection attack detection and

prevention techniques using deep learning,” J. Phys.

Conf. Ser., vol. 2021, IOP Publishing, 2021.

[2] OWASP Foundation, “OWASP Top 10 – 2021: The ten

most critical web application security risks,” OWASP,

2021. [Online]. Available:

https://owasp.org/Top10/.[Accessed: Jul. 25, 2024].

 [3] A. L. Buczak and E. Guven, “A survey of data mining

and machine learning methods for cyber security

intrusion detection,” IEEE Commun. Surveys Tuts., vol.

18, no. 2, pp. 1153–1176, 2015.

 [4] U. Farooq, “Ensemble machine learning approaches for

detection of SQL injection attack,” Tehnički Glasnik,

vol. 15, no. 1, pp. 112–120, 2021.

 [5] J. Zulu et al., “Enhancing machine learning-based SQL

injection detection using contextualized word

embedding,” in Proc. 2024 ACM Southeast Conf., 2024.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

17

[6] I. S. Crespo-Martínez et al., “SQL injection attack

detection in network flow data,” Comput. Secur., vol.

127, p. 103093, 2023.

[7] M. Zivkovic et al., “Optimizing SQL injection detection

using BERT encoding and AdaBoost classification,” in

Proc. 2nd Int. Conf. Innov. Inf. Technol. Bus. (ICIITB

2024), Atlantis Press, 2024.

[8] R. Zuech, J. Hancock, and T. M. Khoshgoftaar,

“Detecting SQL injection web attacks using ensemble

learners and data sampling,” in Proc. 2021 IEEE Int.

Conf. Cyber Secur. Resil. (CSR), IEEE, 2021.

 [9] P. Pramono, R. D. Irawan, and A. A. Sari, “Comparative

analysis of SQL injection attack classification using

Naïve Bayes method and support vector machine

(SVM),” 2024.

[10] A. S. S. Ahmed et al., “A hybrid approach to detect

injection attacks on server-side applications using data

mining techniques,” in Proc. 3rd Int. Conf. Sustainable

Technol. Ind. 4.0 (STI), IEEE, 2021.

 [11] M. Ahmed and M. N. Uddin, “Cyber attack detection

method based on NLP and ensemble learning approach,”

in Proc. 23rd Int. Conf. Comput. Inf. Technol. (ICCIT),

IEEE, 2020.

[12] R.-T. Lo, W.-J. Hwang, and T.-M. Tai, “SQL injection

detection based on lightweight multi-head self-

attention,” Appl. Sci., vol. 15, no. 2, p. 571, 2025.

[13] N. Gandhi et al., “A CNN-BiLSTM based approach for

detection of SQL injection attacks,” in Proc. Int. Conf.

Comput. Intell. Knowl. Economy (ICCIKE), IEEE,

2021.

[14] P. Ogini, E. Taylor, and N. Nwiabu, “A deep learning

approach for the detection of structured query language

injection vulnerability,” Int. J. Inf. Secur., vol. 11, no. 5,

2022.

[15] R. Pallam et al., “Detection of web attacks using

ensemble learning,” Learning, vol. 3, no. 4, p. 5, 2021.

[16] A. G. Kakisim, “A deep learning approach based on

multi-view consensus for SQL injection detection,” Int.

J. Inf. Secur., vol. 23, no. 2, pp. 1541–1556, 2024.

 [17] T.-T.-H. Le et al., “Enhancing structured query

language injection detection with trustworthy ensemble

learning and boosting models using local explanation

techniques,” Electronics, vol. 13, no. 22, p. 4350, 2024.

[18] F. K. Alarfaj and N. A. Khan, “Enhancing the

performance of SQL injection attack detection through

probabilistic neural networks,” Appl. Sci., vol. 13, no. 7,

p. 4365, 2023.

 [19] F. Y. Hernawan, I. Hidayatulloh, and I. F. Adam,

“Hybrid method integrating SQL-IF and Naïve Bayes

for SQL injection attack avoidance,” J. Eng. Appl.

Technol., vol. 1, no. 2, 2020.

 [20] B. Arasteh et al., “Effective SQL injection detection: A

fusion of binary Olympiad optimizer and classification

algorithm,” Mathematics, vol. 12, no. 18, p. 2917, 2024.

 [21] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Deep

learning architecture for detecting SQL injection attacks

based on RNN autoencoder model,” Mathematics, vol.

11, no. 15, p. 3286, 2023.

 [22] J. R. Tadhani et al., “Securing web applications against

XSS and SQLi attacks using a novel deep learning

approach,” Sci. Rep., vol. 14, no. 1, p. 1803, 2024.

 [23] R. Bakır, “UniEmbed: A novel approach to detect XSS

and SQL injection attacks leveraging multiple feature

fusion with machine learning techniques,” Arab. J. Sci.

Eng., pp. 1–14, 2025.

 [24] Y. Li and B. Zhang, “Detection of SQL injection attacks

based on improved TFIDF algorithm,” J. Phys. Conf.

Ser., IOP Publishing, 2019.

 [25] W. Zhang et al., “Deep neural network-based SQL

injection detection method,” Secur. Commun. Netw.,

vol. 2022, no. 1, p. 4836289, 2022.

 [26] D. P. Purbawa et al., “An enhanced SQL injection

detection using ensemble method,” JUTI: J. Ilm. Teknol.

Inf., vol. 21, no. 1, pp. 1–9, 2023.

 [27] M. Shahbaz et al., “Evaluating CNN effectiveness in

SQL injection attack detection,” J. Comput. Biomed.

Inform., vol. 7, no. 2, 2024.

 [28] A. Luo, W. Huang, and W. Fan, “A CNN-based

approach to the detection of SQL injection attacks,” in

Proc. IEEE/ACIS 18th Int. Conf. Comput. Inf. Sci.

(ICIS), IEEE, 2019.

 [29] M. Alshammari, “Deep learning approaches to SQL

injection detection: evaluating ANNs, CNNs, and

RNNs,” in Proc. Int. Conf. Math. Stat. Phys. Comput.

Sci. Educ. Commun. (ICMSCE 2023), SPIE, 2023.

 [30] N. Thalji et al., “AE-Net: Novel autoencoder-based

deep features for SQL injection attack detection,”

IEEE Access, vol. 11, pp. 135507–135516, 2023.

 [31] Q. Li et al., “A SQL injection detection method based

on adaptive deep forest,” IEEE Access, vol. 7, pp.

145385–145394, 2019.

 [32] Y. Liu and Y. Dai, “Deep learning in cybersecurity: A

hybrid BERT–LSTM network for SQL injection attack

detection,” IET Inf. Secur., vol. 2024, no. 1, p.

5565950, 2024.

 [33] D. Lu, J. Fei, and L. Liu, “A semantic learning-based

SQL injection attack detection technology,”

Electronics, vol. 12, no. 6, p. 1344, 2023.

 [34] H. Sun, Y. Du, and Q. J. A. S. Li, “Deep learning-based

detection technology for SQL injection research and

implementation,” Appl. Sci., vol. 13, no. 16, p. 9466,

2023.

 [35] V. Devalla et al., “Murli: A tool for detection of

malicious URLs and injection attacks,” Procedia

Comput. Sci., vol. 215, pp. 662–676, 2022.

 [36] E. Peralta-Garcia et al., “Detecting structured query

language injections in web microservices using

machine learning,” in Informatics, MDPI, 2024.

 [37] P. Tang et al., “Detection of SQL injection based on

artificial neural network,” Knowl.-Based Syst., vol.

190, p. 105528, 2020.

 [38] K. Ross et al., “Multi-source data analysis and

evaluation of machine learning techniques for SQL

injection detection,” in Proc. 2018 ACM Southeast

Conf., 2018.

 [39] C. Y. Daramola et al., “Malicious query recognition

using chosen machine learning techniques,” SN

Comput. Sci., vol. 6, no. 3, p. 281, 2025.

[40] T. Muhammad and H. Ghafory, “SQL injection attack

detection using machine learning algorithm,”

Mesopotamian J. Cybersecur., vol. 2022, p. 5–17, 2022.

 [41] J. Triloka, H. Hartono, and S. Sutedi, “Detection of

SQL injection attack using machine learning based on

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1 - 17

18

natural language processing,” Int. J. Artif. Intell. Res.,

vol. 6, no. 2, 2022.

[42] M. Hirani et al., “A deep learning approach for detection

of SQL injection attacks using convolutional neural

networks,” Dept. Comput. Eng., MPSTME, NMIMS

Univ., Mumbai, India, 2020.

[43] Q. Li et al., “LSTM-based SQL injection detection

method for intelligent transportation system,” IEEE

Trans. Veh. Technol., vol. 68, no. 5, pp. 4182–4191,

2019.

[44] K. Jothi et al., “An efficient SQL injection detection

system using deep learning,” in Proc. Int. Conf. Comput.

Intell. Knowl. Economy (ICCIKE), IEEE, 2021.

[45] A. Ladole and M. Phalke, “SQL injection attack and

user behavior detection by using query tree, Fisher score

and SVM classification,” Int. Res. J. Eng. Technol., vol.

3, no. 6, pp. 1505–1509, 2016.

 [46] M. Hasan, Z. Balbahaith, and M. Tarique, “Detection

of SQL injection attacks: A machine learning approach,”

in Proc. Int. Conf. Electr. Comput. Technol. Appl.

(ICECTA), IEEE, 2019.

 [47] Å. Å. Sommervoll, L. Erdődi, and F. M. Zennaro,

“Simulating all archetypes of SQL injection

vulnerability exploitation using reinforcement learning

agents,” Int. J. Inf. Secur., vol. 23, no. 1, pp. 225–246,

2024.

 [48] S. Ismail et al., “A comparative study of lightweight

machine learning techniques for cyber-attack detection

in blockchain-enabled industrial supply chain,” IEEE

Access, 2024.

[49] D. Muduli et al., “SIDNet: A SQL injection detection

network for enhancing cybersecurity,” IEEE Access,

2024.

 [50] S. Abaimov and G. Bianchi, “CODDLE: Code-

injection detection with deep learning,” IEEE Access,

vol. 7, pp. 128617–128627, 2019.

[51] A. Kim, M. Park, and D. H. Lee, “AI-IDS: Application

of deep learning to real-time web intrusion detection,”

IEEE Access, vol. 8, pp. 70245–70261, 2020.

