NTU Journal of Engineering and Technology (2025) 4 (4): 1 - 17
DOI: https://doi.org/10.56286/ntujet.v4i4

IRROI

Academic Scientific Journals

Available online at: https://journals.ntu.edu.ig/index.php/NTU-JET/index

P-ISSN: 2788-9971 E-ISSN: 2788-998X
NTU Journal of Engineering and Technology

Machine Learning and Deep Learning Approaches for SQL
Injection Detection: A Review

Sahar Saadallah Ahmed'="> Mohand lokman Al dabag?

Department of Computer Engineering Technology, Engineering Technical College, Northern Technical University, Iraq,

2Computer Center, Northern Technical University, Iraq.
sahar_saadallah@ntu.edu.iq, mohandaldabag@ntu.edu.iq

Article Informations

Received: 27-04- 2025,
Revised: 21-08-2025,
Accepted: 01-09-2025,
Published online: 28-12-2025

Corresponding author:
Name:Sahar Saadallah Ahmed
Affiliation: Department of
Computer Engineering
Technology, Engineering
Technical College, Northern
Technical University, Iraq
Email:
sahar_saadallah@ntu.edu.iq

Key Words:

Web Application Security,
SQL Injection (SQL1),
Machine Learning (ML),
Deep Learning (DL),

Natural Language Processing
(NLP),

ABSTRACT

Structured Query Language Injection (SQLi) remains one of the most
serious threats to web applications and has the ability to bypass traditional
signature-based detection through obfuscation and zero-day payloads. This
has driven the wider application of Machine Learning (ML) and Deep
Learning (DL) techniques. This paper analyzes 50 peer-reviewed
literatures published in the interval between 2015 and 2025, where the
reported accuracy of detection ranged between 93 and 99.9%. Traditional
ML methods include Support Vector Machine (SVM), Random Forest
(RF), Logistic Regression (LR), and Decision Tree (DT). DL approaches
encompass Convolutional Neural Networks (CNN), Long Short-Term
Memory (LSTM), Bidirectional LSTM (BiLSTM), and transformer-based
models such as Bidirectional Encoder Representations from Transformers
(BERT). Feature extraction methods include Term Frequency-Inverse
Document Frequency (TF-IDF), Word2Vec, and contextual embeddings.
Evaluation of proposed models uncover new research opportunities in
terms of lack of data availability, the problem of calss imbalance, real-time
application, and excessive use of hardware resources.

THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE:
https://creativecommons.org/licenses/by/4.0/

OMoM

https://doi.org/10.56286/ntujet.v4i3
mailto:sahar_saadallah@ntu.edu.iq
mailto:mohandaldabag@ntu.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0003-3920-6102
https://orcid.org/0000-0003-1682-4293
mailto:sahar_saadallah@ntu.edu.iq

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

1. Introduction

The fast growth of web-based systems has created
major security problems, especially in injection
attacks that take advantage of poor input handling.
Structured Query Language Injection (SQLi) is one of
the most common and harmful of these attacks. By
sending specially designed input, an attacker can

8 % Name : admin
\ Password : 123456

Web Application Login Form

Name :

Name : 1'or1=1--
Password : 123

General Users

Select

Hacker

WAF

change how the database works, causing data leaks or
even complete system compromise [1].

Fig. I shows a standard SQLi example in a web
login form. In this case, weak input validation allows
a malicious user to change the SQL query and get into
the system without permission.

Normal SQL
Select * from user where
Name="admin’ AND Pwd="'123456'

.

»

Hacker SQL
Select * from user where Name="1" or
1=1-- AND Pwd="123"
Web Server MysQL
Dynamic SQL

* from user where Name="(0)' AND Pwd="(1)’

Fig. 1. SQL Injection Attack Process [1].

The annual reports of the Open Worldwide
Application Security Project (OWASP) Foundation,
between 2017 and 2021, ranked SQLi among the top
ten most critical web application security risks. During
this period, its rank fell from first to third place, despite

2017
AD1:2017-Injection
A02:2017-Broken Authentication ~
AD3:2017-Sensitive Data Exposure —>< ~
AD4:2017-XML External Entities (XXE) S
A05:2017-Broken Access Control ~

A06:2017-Security Misconfiguration —
A07:2017-Cross-Site Scripting (XSS)
A08:2017-Insecure Deserialization

A09:2017-Using Components with Known Vulnerabilities —

A10:2017-Insufficient Logging & Monitoring -

that SQLi remained persistently mentioned in cases
involving data breaches and infrastructure
compromises [2]. Fig. 2 presents the OWASP Top 10
web application security risks, showing the position of
SQL injection.

2021
= A01:2021-Broken Access Control

-___344__._.-) A02:2021-Cryptographic Failures

T A03:2021-Injection
[New) A04:2021-Insecure Design
= A05:2021-Security Misconfiguration
N7 A06:2021-Vulnerable and Outdated Components

— =\ A07:2021-Identification and Authentication Failures

lew) AD8:2021-Software and Data Integrity Failures
I _—%A09:2021—Security Logging and Monitoring Failures*®
(New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

Fig. 2. OWASP Top 10 risks in 2017 and 2021 [2].

Modern, obfuscated, or zero-day SQLi attacks
have become increasingly difficult to detect using
conventional signature-based or rule-driven defense
mechanisms. These techniques rely on pre-established
patterns that are inadequate to address new variations
or payloads that are behaviorally hidden [3].
Consequently, the researchers became more interested
in new and more intelligent solutions due to the wide

gap between attacker evolution and stagnation of
defenses.

Artificial intelligence (AI) has emerged as an
essential part of the development of cybersecurity
systems. Al uses approaches like pattern recognition,
semantic analysis, and self-directed learning to detect
and respond to complex attacks in real time. The
machine learning (ML) component of Al allows
models to recognize suspicious or unusual patterns in

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

large datasets without requiring complex
programming [4, 5]. Popular Algorithms such as
Support Vector Machine (SVM), Random Forest
(RF), and Neural Networks (NN) possess a high level
of accuracy when classifying malicious inputs using
their structural and semantic properties. Intuitively, it
seems that deep models, including Convolutional
Neural Networks (CNN) and Recurrent Neural
Networks (RNN), could specialize in contextual
embeddings and complex sequence dependencies
related to query strings. For instance, it has been
demonstrated that CNN-based detectors could identify
and capture obfuscated payloads much more
efficiently than traditional classifiers and extract
multi-level features. [6]. Therefore, by incorporating
such models, it will be feasible to develop a much
more robust and scalable system to detect SQLi.

To further enhance the detection of SQLi attacks,
researchers have increasingly adopted Natural
Language Processing (NLP) methods alongside ML
techniques. Text representation strategies such as
Term Frequency—Inverse Document Frequency (TF-
IDF), Word2Vec, and Bidirectional Encoder
Representations from Transformers (BERT) have
proven effective in capturing the syntactic and
semantic structures of SQL queries, allowing
classifiers to better distinguish between malicious and
benign statements. These embeddings assist in
capturing contextual meaning, which is crucial for
detecting subtle injection patterns [4]. In addition,
recent studies have highlighted the advantages of
hybrid models and ensemble learning techniques that
combine multiple algorithms to enhance robustness
and accuracy, especially in identifying obfuscated
payloads and managing imbalanced datasets in real-
time environments [7, 8].

1.1 Research gaps

While the progress made in the studies is
commendable, the studies highlighted in the research
still showcase gaps in real world implementations of
SQL injection detection. First, there remains a strong
reliance on classical ML paired with Bag-of-Words
(BoW), and TF-IDF rather than contextual
embeddings or hybrid deep architectures, which
constrains generalization to obfuscated or previously
unseen payloads [9-11].

Second, the input scope is frequently narrow; most
works operate on query strings or textual payloads,

with few explicitly handling richer vectors. For

example, several studies use only textual inputs or
Kaggle-style SQL query corpora without broader
protocol/context features [10, 12, 13].

Third, evidence of online or production-grade
validation is limited: a handful demonstrate
deployment or real-time feasibility (e.g., a Flask app
or firewall and edge suitability), but most evaluations
remain offline [10, 12, 14, 15].

Fourth, explainability is underutilized, apart from a
few works employing SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-agnostic
Explanations (LIME), most models lack integrated
Explainable Artificial Intelligence (XAI) to support
auditing in security-critical settings [16, 17].

Fifth, data limitations persist, including small or
proprietary datasets and reliance on single public
corpora, which can bias reported metrics; concrete
examples include modest-sized or single-dataset
evaluations and limited external validation [18-21].

Finally, only a few frameworks consider multiple
web attacks (e.g., SQLi and cross-site scripting (XSS))
within a unified model, while most approaches remain
narrowly scoped to SQLi [22, 23].

1.2 Problem statement

Although numerous studies have explored SQL
Injection detection using ML and DL techniques, the
development of robust and practically deployable
solutions remains limited. Current detection
frameworks frequently limit their analysis to query
strings or POST parameters, overlooking other
potentially exploitable vectors, including Hypertext
Transfer Protocol (HTTP) headers (e.g., User-Agent,
Cookies) and Domain Name System (DNS)-level
payloads. DL models have shown good accuracy in
controlled settings, but they can't be used in real time
because they take up too much processing power and
aren't flexible enough to handle new or hidden
payloads. This is especially true for Web Application
Firewalls (WAFs) and Intrusion Detection Systems
(IDSs).

Furthermore, the opaque nature of numerous deep
learning architectures constrains interpretability,
inhibiting security analysts from validating or auditing
detection results, which is a crucial necessity for
security-sensitive systems. Class imbalance in SQLi
datasets skews models even more toward benign
queries, making them less sensitive to rare but
dangerous attack patterns. Lastly, many of the
proposed detection methods haven't been tested in
real-world settings, raising concerns about scalability,
operational feasibility, and long-term adaptability.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

1.3 Research questions

This review tries to answer some basic questions
about the current state and future direction of SQLi
detection research.

First, it tries to find and compare the different
machine learning (ML) and deep learning (DL)
methods that have been used to detect SQLI. It focuses
on how accurate, efficient, and useful they might be in
the real world.

Second, the review looks at the extent to which
recent detection models being able to adapt in real
time, being able to analyze multiple input vectors, and
being able to explain themselves using XAl
techniques. Third, it looks at the big research gaps and
technical problems that still exist in the current
literature.

Finally, it seeks to establish a compilation of optimal
practices and prospective research trajectories that can
facilitate the advancement of more resilient,
comprehensible, and scalable SQL injection detection
systems.

1.4 Research objectives

This review provides a critical, comprehensive
synthesis of machine learning (ML) and deep learning
(DL) based SQL injection detection from peer-
reviewed studies published between 2015 and 2025.
First, it shows how model families, like classical,
deep, and hybrid, can be designed and what
preprocessing and feature-representation options they
have. Second, it looks at how well things work in real
life, with accuracy as the main way to compare them.
Third, it points out common methodological problems,
such as limited generalizability, class imbalance, XAl,
computational overhead, and real-time constraints.
Fourth, it looks at practical issues that come up when
trying to make something scalable and deploy it in a
security setting. Lastly, it puts together evidence-
based suggestions and design rules for making SQLi
detection systems that are strong, easy to understand,
and can grow to fit real-world situations like WAFs
and IDSs.

2. Research Methodology

This review follows aset paln for reviewing
literatures. We restricted the scope to peer-reviewed
studies on SQLi detection using ML and DL published
between 2015 and 2025. We searched IEEE Xplore,

SpringerLink, MDPI, and Google Scholar using
combinations of the terms SQL injection, detection,
classification, ML, and DL. Duplicates were removed,
records were screened by title and abstract, then
assessed in full text against predefined inclusion
criteria (English, peer-reviewed, ML and DL for SQLi
with quantitative evaluation) and exclusion criteria
(non-ML approaches, no dataset or metrics, non-
English, duplicates, outside the timeframe). We
retrieved 100 records; after deduplication, 71 records
remained for title-abstract screening and full-text
assessment, of which 50 studies met the inclusion
criteria and were included in the final review. For each
included study, we extracted fields aligned with our
summary table: Authors, Objective, Method,
Accuracy (was employed as the primary evaluation
metric to assess the performance of the applied
models. Accuracy is formally defined as the
proportion of correctly classified instances (both
attack and benign queries) over the total number of
instances, as shown in Equation (1):

TP+TN
TP+TN+FP+FN

Accuracy =

)

where TP denotes true positives, TN true negatives,
FP false positives, and FN false negatives. A higher
accuracy value indicates that the model can correctly
distinguish between malicious and legitimate SQL
queries with greater reliability [30]), Strength Points,
and Limitations, and complementary details (model
family, preprocessing and feature representation, use
of explainability, and any deployment or real-time
evidence such as Flask, microservices, or firewall or
edge settings). Owing to heterogeneity across datasets
and experimental setups, findings were synthesized
narratively, grouped by model family and
representation choice; no reimplementation or
additional quantitative testing was performed.

3. Related Work

Prior research on SQL injection detection spans two
broad strands: classical machine-learning pipelines
driven by handcrafted textual features, and deep and
hybrid architectures that learn hierarchical or
contextual representations directly from payloads.

Classical ML with handcrafted features. Numerous
studies rely on BoW and TF-IDF (or variants such as
Improved Term Frequency—Inverse Document

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

Frequency(ITFIDF)) with classifiers including SVM,
Logistic Regression (LR), Naive Bayes (NB), k-
Nearest Neighbors (KNN), Decision Tree (DT), RF,
and boosted ensembles, often reporting competitive
accuracy under controlled settings [9, 15, 24, 25].

Work has also examined data imbalance and
sampling effects on SQLi detection performance,
highlighting the sensitivity of results to class skew and
evaluation protocol [8]. Feature-selection methods
also appear in several papers to streamline models or
improve generalization [18, 20, 26].

Deep and hybrid models. CNN-based detectors
trained on network or HTTP payloads have shown
strong results without manual feature engineering [27,
28], while hybrids combining CNN with Bidirectional
Long Short-Term Memory(BiLSTM) capture both
local n-gram patterns and long-range dependencies
[13, 22, 29].

Representation-learning approaches include
autoencoder-derived features used with downstream
classifiers [30]

Deep Forest as a non-neural deep alternative [31].
Lightweight attention models designed for low-
latency inference [12].

Contextual and sentence-level embeddings. Several
works move beyond sparse vectors toward dense,
semantics-aware representations. Comparative studies
evaluate contextualized embeddings against BoW and
TF-IDF with classical learners [5], while BERT-based
or BERT-hybrid architectures (e.g., BERT-LSTM,

Syntactic Bidirectional Encoder Representations from
Transformers(synBERT)) aim to capture obfuscation-
resilient semantics at the token or sentence level [23,
32-35].

Explainability and deployment aspects. A subset of
studies integrates XAI tooling, such as SHAP or
LIME, to enhance the auditability of model decisions,
particularly in operational settings [16, 17].

On the deployment side, prior work demonstrates
practical prototypes or settings including Flask-based
applications, microservice-oriented designs, and
firewall, edge-style integrations, indicating a path
from offline evaluation to applied use cases [10, 12,
14, 15, 36]. Other efforts aggregate multi-source
traffic or Internet Service Provider(ISP) data to
approximate realistic conditions [37-39].

Beyond a single-attack scope. While much of the
literature targets SQLi specifically, some frameworks
broaden the scope to multiple web threats (e.g., joint
SQLi and XSS detection) or related query-injection
families, underscoring the importance of generalizable
defenses in heterogeneous environments [15, 22, 35].

Fig. 3 Conceptual pipeline summarizing the main
stages of SQL injection detection techniques, based on
prior research themes including feature extraction,
imbalance handling, classification, explainability, and
deployment.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

Feature En

A

A A 4

BoW / TF-IDF

/ ITFIDF BERT, synBERT

1

Class Imbalance Handling (e.g., S

:

Classif

—

Traditional ML: (SVM, LR, NB,
RF, ANN, ...)

s

Evalua
Explair

—

Accuracy, Precision,
F1-score

Deplc

v

Flask/Microservice Firewe
Apps Integ

Fig. 3. Conceptual workflow of SQL injection detection
researches.

Table 1. Summary of related works evaluation.
presents a focused comparison of selected
representative studies from the reviewed literature.
Each entry highlights the key technique used by the
authors and outlines the most critical limitations of
their proposed approaches. This table aims to
emphasize not only the methodological contributions
but also the gaps that hinder real-world applicability,
such as a lack of explainability, the absence of feature
selection or hybridization, and limited scalability or
deployment.

Fig. 3 Conceptual pipeline summarizing the main
stages of SQL injection detection techniques, based on
prior research themes including feature extraction,
imbalance handling, classification, explainability, and
deployment.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

Feature Engineering

A 4 A 4 A 4 Y
BoW / TF-IDF / ITFIDF BERT, synBERT QUSEER e Feature Selection
Features
v
Class Imbalance Handling (e.g., Sampling, SMOTE, SMOTEENN, ...)

v
Classification
v v
Traditional ML: (SVM, LR, NB, Deep / Hybrid: (CNN, BiLSTM,
RF, ANN, ...) BERT-LSTM, Deep Forest, ...)
Evaluation &
Explainability
v v
Accuracy, Precision, XAl: SHAP, LIME
F1-score
v
Deployment
+ 3 v
Flask/Microservice FlrewaII/nge ISP-scale Data Use
Apps Integration
Fig. 3. Conceptual workflow of SQL injection detection researches.

Table 1. Summary of related works evaluation.

Accura

Strength Points

Limitation

Method

cy

Preprocessed HTTP traffic
through recursive decoding and
generalization, then applied
Word2Vec for embedding; trained
CNN and Multilayer
Perceptron(MLP) models;
evaluated using confusion
matrices and F1-score.

Combines NLP and
DL; effective use of
Word2Vec, CNN, and
MLP; evaluated on real
HTTP data with
detailed metrics.

98.58%

Manually constructed,
balanced, and labeled

Focuses only on first-order

SQLi; limited to offline

evaluation; second-order

and hybrid SQLi attacks
not addressed.

No DL models used,
dataset limited to

Author Objective
To develop DL

(Chen et based SQLi
al.2021) detection model
[1] that avoids rule-
based systems.
To develop an
(Farooq. effective SQL

2021) [4] | injection detection

system using

Created a labeled dataset of
35,198 queries (normal,

0
99.34% dataset with detailed

structured queries;

feature engineering;

malicious, plain text) with 21
statistical and semantic features.

performance in real-world

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) :

1-17

ensemble ML
techniques and a
manually
constructed feature-
rich dataset.

Applied four ensemble classifiers
(Gradient Boosting
Machine(GBM), Adaptive
Boosting(AdaBoost), Extreme
Gradient Boosting(XGBoost),
Light Gradient Boosting
Machine(LGBM)) and evaluated
using 3-fold and 5-fold cross-
validation.

extensive evaluation
using multiple metrics,
comparative analysis
with prior methods
showed improvement.

unstructured web logs not
tested.

Compare
contextualized vs.

Applied BoW and Robustly
Optimized BERT Pretraining

High accuracy across
models, significant

Training excludes
pretraining cost of
RoBERTa; higher memory

anc non-contextualized Approach (RoBERTa). above reduction in training neede.d for RoOBERTa
al.2024)[. .) . embeddings; BoW models
’ 5] word embeddings embeddings; trained MLP, RF, 99% time, better model consumed f’li h memo
for SQLi detection KNN, and LR classifiers on calibration with and showge d poor y
using ML models Kaggle SQLi dataset contextual embeddings IOWeE b
generalization in some
classifiers
Evaluated 7 classifiers (DT, RF,
Investigate the LGB, XGBoost, Categorical . .
impact of extreme Boosting (CatBoost), NB, LR) ngorqus data Did no‘t explore .
.) preparation; Deep oversampling or hybrid
class imbalance and | across different Random Under- stical validation: line: Onlv f
(Zuech et rarity on the Sampling (RUS) random statistical va l.d ation; sampling; Only focused on
al 2021) detection of SQL undersampling) ratios; Used - E:ﬂolriid ciisesrf::‘:iroigfl Cux:(a A%néi; int:tiic
[8] Injection web stratified 5-fold CV repeated 10 F irstp to (%ee ly anal zé Evaluation limited to S’QL
attacks in the CSE- | times (total 2800 runs); Statistical 0 deeply ana’y vaiu
T . SQLi rarity in CSE- Injection attacks only from
CIC-IDS2018 analysis via Analysis of CIC-IDS2018 two davs in the dataset
dataset. Variance(ANOVA) and Tukey's ’ Y ’
HSD.
(Pramon . ffeggxr/rz:i fses t(})lt? NB Preprocessing TF-IDF and NB vs. Simple yet effective Limited to Kaggle dataset;
o etal, and SVM in SVM using the labeled Kaggle 96.67% comparison; tested 3 does not apply ensemble or
2024).[9] classifying SQL dataset. data split scenarios. DL methods.
Layer 1: Pattern matching. Layer
2: ML classifiers (SVM, DT,
(Ahmed I?;;%{Sig.l‘;c?gi AdaBoost, RF, LR, NB), Real-time firewall; Only textual input: limited
et attacks u;in a Synthetic Minority Over- 100% high accuracy; handles NOyS QL sam II; S"IlO file
al.2021) hvbrid two-1 ag or sampling Technique with Edited ® | both SQL and NoSQL; support: nopDL’ used
[10] y firewall y Nearest dataset published. pport; ‘
’ Neighbors(SMOTEENN),
GridSearchCV.
Collected SQLi and normal Integrated NLP-based
me o0 enhance o oW feature imited to classica ,
Aimed | ToamhanesoL | Fouds g b s o Limed o sl VL.
and injection detection tokjen attern via re expa,m d extraction, large lacks DL or word
Uddin accuracy using ML Coun tVeIZ torizer to ex%rac t BoW 98.15% dataset, high embedding; no real-time or
2020) and NLP features: applied RF classifier classification metrics, online system evaluation
techniques. . .) and robust comparison implemented.
1 hni with ba ;n p'Pcom ared with DT d rob : impl d
Nng S%/M aII: 4 KNN ’ with four classifiers.
Develop a SQL-specific to!(enlzer using Compact model with Slightly lower accuracy
lichtweight and command expression and symbol 69,269 parameters, fast than DistIBERT and
(Lo et e%ﬁcien tgneural categories combined with CNN inference suitable for Efficiently Learnine an
al.2025) and multi-head self-attention, 98.98% edge devices, Y g
Encoder that Classifies

[12]

network model for
SQL injection
detection.

followed by a sigmoid output
layer trained on the Kaggle SQL
injection dataset.

competitive with large
pretrained models like
A Lite

Token Replacements
Accurately

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

(ELECTRA), limited to
SQL injection detection,
depends on the quality of

the SQL-specific
tokenizer.

Moderate execution time,
limited dataset size, no
discussion of real-time
deployment or adversarial

threats.

Limited to FFNN; only
evaluated on Kaggle data;

comparison or overfitting

no hybrid model

discussion.

Limited XSS data; no real-

time and adversarial
testing.

other web attacks; limited

Focused only on SQLi;
does not address XSS or

real-time deployment
evaluation.

SHAP is computationally
expensive; XGBoost
showed limited
performance in this use
case; evaluation was
limited to a controlled
dataset, not real-time or
adversarial settings.

. | To develop a hybrid
(Gagidh‘ CNN-BiLSTM
al2021) model for accurate

'[13] detection of SQL
injection attacks.
To develop a DL
based Feed-
(Ogini, et Forward Neural
al.2022) Network(FFNN)
[14] model for detecting
SQL injection
attacks.
(Paeliam Detect SQLi &
XSS using ML
al.[21052]1) ensemble methods.
To improve SQL
injection (SQLi)
(Kakisim detection using a
2024) DL system
[16] leveraging multiple
semantic
representations.
Compare ensemble
and boosting
g“ (fzflt) T:li > | models and enhance
7] ’ SQLi detectiop
transparency using
SHAP and LIME.
. To enhance the
fg?i?}ri;]l detection
2023)[1 | Performance of
8] ’ SQL injection
attacks using DL

BERT(ALBERT) and
Distilled
BERT(DistilBXERT).
4200 labeled queries processed High detection
through cleaning, tokenization, accuracy, effective
and embedding, classified using 98% hybrid architecture,
CNN for feature extraction and robust comparison with
Bi-LSTM for sequence modeling. multiple models.
Used a dataset of 30,635 SQL
queries from Kaggle. High detection
Preprocessed with accuracy; real-time
CountVectorizer and TF-IDF. 97.65% Flask deployment;
Trained FFNN in TensorFlow, thorough
Keras, over 20 epochs, and preprocessing.
deployed using Flask.
Used TF-IDF with LGBM, Practical deployment,
AdaBoost, XGBoost , and GBM; | 99.59% | high accuracy, and an
deployed on a Flask app. IP ban feature.
Introduced Multi-View
Convolution-Bidirectional Effective multi-view
Convolutional Neural]
Network(MVC-BiCNN), CoNSeNsuS strategy;
combining BiLSTM and CNN; strong generalization
. .. . Iy 99.96% | across datasets; robust
applied multi-view learning with feature representation:
tokenized, converted, and XA ex lali)nabili tv wi t’h
enriched representations; used 21 pLIME y
semantic tags; evaluated on 5 ‘
datasets.
Trained DT, RF, XGBoost, Hich detection
AdaBoost, Gradient Boosting & .
Decision Tree(GBDT), and 1 .aclc;ll?;aczil h
Histogram-based Gradient exggzls ! tiyLIhr/I)l;l g
Boosting Decision Tree(HGBDT) | 99.50% | fi‘)‘; erloworld
on an SQL injection dataset; depl ¢ th h
evaluated using accuracy, F1- eproyment, thoroug
score, SHAP, and LIME comparative evaluation
explainability techniques. of multiple models.
A Probabilistic Neural Network Utilized an
(PNN) optimized via the BAT optimization algorithm
algorithm; features were extracted p A fi & h ’
using tokenization and regular BAT, to fine-tune ¢ ¢
expressions, and selected via Chi- smoo'thmg pargmeter,
Square test. The dataset included | 99.19% high detectl.on
6000 SQLi and 3500 benign accuﬁ‘cy’.
queries. Evaluated using 10-fold COMPIENCASIVE
cross-validation and compared e.valuatlon. with
with SVM, Artificial Neural multlple ({laSSIﬁers and
Network(ANN), and DT. validation setups.

High model complexity;
sensitivity to noisy or
irrelevant features; a
custom dataset may limit
generalizability.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) :

(e To prevent SQL Integrates pattern Increased web load time
an et al Injection attacks A hybrid model combining SQL matching and ML; due to dual processing;
2020) > using a hybrid Injection Free Secure (SQL-IF) 90% works as a real-time dataset limited to 250
[19] intelligent detection | and NB, implemented as a proxy. proxy; evaluated using queries; lacks external

system. real attacks. validation.
Tmprove SQL De?vellop'ed a Blntnjy Olympiad Effecfuve featu.re
L . Optimization Algorithm (BOOA) reduction boosting .
(Arasteh | injection detection . . . 2. Does not explore DL;
. . for feature selection; trained accuracy; high stability | ,. .
et by selecting optimal . limited to a modest dataset
classifiers (ANN, DT, SVM, 99.35 across runs; .
al.2024) features and . L size; only 13 hand-
. . KNN) on 13 numerical features; combination of BOOA .
[20] classification £ h el engineered features used.
techniques cgmpared performance with and and ANN yields top
' without BOOA-selected features. performance.
To develop an RNN They.tr'funed an RNN autoencoder The arch1tectur§ Evaluation used a single
(Alghaw consisting of an encoder—decoder captures sequential . .
> autoencoder . . public dataset, without
azi et architecture for pair to compress and reconstruct 949, patterns effectively and real-world deplovment or
al.2023) . SQL queries and added an LSTM- ° was benchmarked ploy
detecting SQL . . larger, more diverse data
[21] L based classifier on the encoded against seven other
injection attacks. . . samples.
representations. classifiers.
Develop a unified Unified model detects High training time;
(Tadhani P Hybrid CNN-LSTM model with multiple attack types; & g ’
DL model to detect . . . performance may be
ct both SQLi and XSS preprocessing (decoding, 99.84% high accuracy across dataset-dependent; not
al.2024) standardization, tokenization) and ’ three datasets; effective ’
web attacks . ; tested on other attack types
[22] . Word2Vec embedding. preprocessing and . S
effectively. . like Zero-day or phishing.
embedding strategy.
UniEmbed: fuse Universal Multi-level feature
Unified detection of Sentence Encoder(USE) sentence- fusion yields top Tested only on beqchmark
(Bakir XSS and SQL level, Word2Vec word-level, performance; datasets; no live
2025) iniection usin FastText subword-level; train ML | 99.82% consistent results deployment; limited to text
[23] fus eJ d embed ding s classifiers LR, SVM, GNB, DT, across datasets and inputs; not evaluated on
£s- KNN, MLP, RF; use hard voting classifiers; efficient novel attack types.
and soft voting. inference.
Proposed an ITFIDF algorithm
To enhance SQL considering feature distribution Higher feature
injection attack across SQL statement types, representation Limited dataset diversity,
Li& detection by extracted 34 features including accuracy, superior no real-time system
Bin improving the keyword frequency and ITFIDF 99 08% classification evaluation, lacks
2019) traditional TF-IDF of 32 sensitive characters, used e performance with contextual or semantic
[24] algorithm through SVM for classification, and SVM, and improved analysis of SQL
distribution-aware compared against existing metrics over baseline statements.
feature weighting. | methods and classifiers.(KNN and methods.
DT).
SQL Neu'ral Network (SQLNN) Integrates DL with
Propose a deep model using TF-IDF for feature .
(Zhang . : . automated feature Lacks real-time
o neural network extraction, Rectified Linear extraction. avoids deplovment validation:
(SQLNN) for Unit(ReLU) activation, Adam | 96.16% T, avo ployment >
al.2022) . overfitting using relies on a single dataset
accurate SQL optimizer, and Dropout .
[25] L . A . Dropout, robust against from Kaggle.
injection detection. regularization; compared with evasion attacks
KNN, DT, and LSTM.)
. . . Combmed mgl'uple ML Limited to classical ML
(Purbawa | Enhance detection Preprocessing (stemming, algorithms with feature models onlv. no
et accuracy of SQLi lemmatization, TF-IDF), models: 97.07% selection (ANOVA) combarison wi thybL used
al.2023) using an ML LR, LDA, GNB, RF, and Voting 7% 1 and vectorization (TF- onlf one small dat;lse ¢
[26] ensemble. Classifier (soft voting). IDF), using Kaggle Y

data.

version.

10

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

Built a CNN model trained on a

(Shahbaz T(]; : ;jgﬁg;efg?_ dataset of 109,520 SQL queries High detection Requires diverse data; high
ot al detecting SQL (80% train, 20% test) using accuracy; automatic computational resources;
200 4)’[2 iniec tionga ttacks embedding, with one-dimensional | 98.16% feature learning; slightly lower performance
7] ’ le thout manual convolution (Conv1D), pooling, minimized false on malicious queries

feature engineerin and dense layers for feature positives and negatives. (FN=484).
& & extraction and classification.
Collected SQL injection payloads .-
ig'(;(iie(t)icztfgll;s from real HTTP traffic, applied Ut;j;zf;(i rzal-riv eodrld Focused only on CNN
e i rjl 4 CNN-based data sanitization and vectorization tho;ogph without comparing other
al2019) | mo dil and compare using Gensim, and trained a CNN 99.50% ‘e rocessir% and DL models, limited to
.[28] it with tradi tiolrjlal model consisting of three e p é)emons tra%é d binary classification, and
rule-based convolutional and pooling layers robustness against lacked broader dataset
detection. with a fully COEII;,Z(;ted and hidden obfuscated attacks. diversity.
To evaluate and Clear comparison
compare the 1€ wit - . 1mited dataset; no real-
(Alsham pare th Applied ANN with TF-IDF between df)fferent Limited d !
mari performance of vectors, CNN with embedding, neural network world deployment; lacks
ANNs, CNNs, and convolution, pooling, and RNN | 99.70% .) comparison with
2023) . . architectures using the o .
RNNs for detecting with LSTM on SQL query traditional ML or hybrid
[29] SQL injection dataset same dataset and models
J ’ evaluation metrics. ’
attacks.
Proposed Autoencoder Network
To develop an (AE-Net) to extract high-level
deep features from SQL queries.)
(Thalji et bzlslz(zlrrri::ig(’)?;r Evaluated with ML and DL Novel deep features hfﬁ% t?;iegfg(ggsg; -
al. 2023) detecting SQLi models: KNN, LR, RF, XGBoost 99% improved detection; i o real-time Graphical ’
[30] attacks v%i thout (for BoW & TF-IDF), and KNN, robust evaluation. User Interface((I‘:UI)
human intervention RF, XGBoost, LSTM (for AE-Net)
" | features). Hyperparameter tuning
and k-fold validation applied.
Automatically adjusts
parameters; low
Propose an . . o .
(Q. Li et effective SQLi Adaptive Deep Forest (ADF) with overfitting; high Slightly outperformed by
al '201 9) detection method AdaBoost uses multi-grained 98.00% accuracy with small DNN when training
’ scanning and cascade forest e datasets; better than samples exceed 16,000;
[31] for complex & P
environnfen ts architecture. Deep Neural limited dataset diversity.
’ Network(DNN) and
ML models.

(Liu and Propose a hybrid | BERT for contextual embeddings, High accuracy; robust Limited performance on
Dai BERT-LSTM and LSTM for sequence o to obfuscation; .
2024)[32 | model for detecting modeling. Dataset: HttpParams 97.3% effective semantic nezgzo(i:icg()f;?niga:;?én

] SQLi attacks. (30,156 samples). modeling. & ’
Propose an aceurate Developed synBERT, a semantic Iiﬁgg&izi;iefa&gc Missing details on dataset
(Lu et al anIc)1 eneralizable learning-based model that embeds svntax trees: sgtron balance and real-world
2023).[3 mo%iel for SQL SQL statement semantics; trained | 99.74% er};eralizatior; BERgT- scalability; limited ablation
3] L . and evaluated on multiple & ’ and interpretability
injection detection. based deep .
datasets. . analysis.
architecture.

11

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

Employed an enhanced TextCNN
for local feature extraction, A combination of Dataset type and size not
(Sun et To propose a DL- follc?wed blei—LSTM for CNN, Bi-LSTM, specified; lacks exact
a1 2023) based detection sequer}tlal learmng. Integrated an above attent%on, and BERT; metrics (¢ g’ accuracy, F1-
'[3 4] method for SQL attention mechanism to improve | 99.57% | effective for complex score); 1'10.t’ validate d’in
injection attacks. long-sequence handling and and evolving SQLi real-w;)rl d deployment
incorporated BERT for transfer patterns. ’
learning.
To detect SQLi, Proposed the mURLI tool Extensive feature .
(el No.SQLi, and integrating RF, KNN, XGBoost, engineering, effgctive A szzﬂgg%?ﬁégﬁaset
ot al malicious QRL AdaBoost, ANNi BiLSTM, and model comparison, accuracy: BERT
2022') attacks using BERT; applied feature 99.84% strong BERT un derperfo;me dona
[35] intelligent models, engineering and Synthetic performance on textual numeric-based malicious
including ML and Minority Over-sampling inputs, and effective URL dataset
DL methods. Technique (SMOTE) balancing. SMOTE application.)
T . Limited prior studies on
(Garcia, To compare ML Trained SVM, RF, and DT using lfiealfstlc mlﬁ r](; sle chzs SQLi in microservices;
et algorithms for SQLi TF-IDF and CountVectorizer; o °p oy.me?n > baance challenges in handling
al.2024) detection in web deployed in a microservices-based 9%, dataset; hlgh_ detectllon complex query structures;
. . . performance; practical . .
[36] microservices. architecture. evaluation not tested in real-time
’ adversarial settings.
To develop a neural
network-based Extracted 8 statistical features for Proposed dual-model LSTM showed lower
(Tang et model f.or. accurate MLP and used American. comparison using both accuracy and signiﬁcantly
a1 2020)][SQ.L injection Standard Code for Information 99 67% MLP (fast, feature- higher detecFlon time;
‘ 37] detection using both Interchange(ASCII)-encoded ' based) and LSTM ASCII encoding limited
statistical and sequences for LSTM; models (sequential, scalable); the distinction between
sequential URL trained using PyTorch. real ISP data used. characters.
features.
Designed a vulnerable enterprise
chat web application; captured
HTTP and MySQL traffic using
Snort and Datiphy appliances;
generated normal and attack Multi-source data
Propose a multi- traffic (manual SQLi and . . Simulated dataset (not
(Ross et | source data analysis SQLMap); used Waikato 1mproves .detectlon, real-world traffic); ANN is
.) systematic feature .
al.2018) | system to improve Environment for Knowledge 98.06% lection. detailed ti accurate but slow; no
[38] SQL Injection Analysis (WEKA) with feature selection, fe atled fime generalization to other
detection accuracy. selection (Correlation-based and per ormance attack types yet.
Feature Selection(CFS) and metrics.
Genetic Search); evaluated
classifiers (JRip, J48, RF, SVM,
ANN) on three datasets: Webapp,
Datiphy, and Correlated.
(Daramol | Proactive detection Collected & preprocesspd 88,213 Very large, diverse No I.lyp.erparamete'r tuning;
act and classification of labeled queries; engineered Flatgset; end-to—eqd limited to SQLi; not '
al.2025) malicious SQL featureg (eptropy, keywords, 98.4%, plpellné; comparative evaluated on IlOIl—.SQLl
'[3 9] queries tokenization); trained and evaluation of four ML attacks or real-time
’ compared RF, MLP, SVM, NB. models; open data. deployment.

12

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

To implement
predictive analytics

Multiple ML algorithms (LR,
Sequential Minimal Optimization
(SMO), J48, Instance-Based K
(IBK), Stochastic Gradient

Comprehensive metric-

uham . escent , NB, an ased evaluation; imited dataset size from
Muh for detectine and D SDG), NB, and based evaluati Limited d ize fi
mad et classifvin gé QL Bayesian Network 98 77% realistic simulation DVWA; lacks real-time
al. S assifier were traine environment; robust etection; no use o
1.2022 i ectlc})/n agttacks Classifier(BNK ined e i b d i f
[40] ! usine ML and evaluated using WEKA with model via hybrid contextual embeddings.
& 10-fold cross-validation and hold- detection.
classifiers.
out. Features extracted from
Damn Vulnerable Web
Application(DVWA) access logs.
Used dual datasets
(Triloka To detect SQLi Tested five classifiers (SVM, (training and Limited to specific corpus
et attacks using ML KNN, LR, GB, NB) using text- 99.77% challenge), NLP-based parameters; real-world
al.2022) and NLP-based based features and corpus e preprocessing, generalizability not
[41] feature engineering. processing with Python NLTK. evaluated Time of validated.
Process, and accuracy.
To detect and Wide dataset coverage,
(it compare SQLi Compiled a dataset with various dliztil:(%%l;l itlpies. Cli?lflcggf Ctrlér\/ig:?l(llz;fse ¢
of attack detection SQLi types (union, blind, error- stron CNIEI/p ’ size not é)x licitl ’state &
performance across | based); preprocessed and labeled | 94.84% & . X p Y ’
al.2020) CNN and payloads; evaluated DT, NB performance; thorough | real-time deployment and
[42] traditional ML SVM KNI\} and CNN cla;si ﬁérs comparison with four generalizability not
aleorithms ’ ’ ’ ML models; robust evaluated
&) metric analysis.
To develop an | Pr.(}posed ar; .LSTM.-‘Eased Automatic feature |
offective SQL classifier com ined wit a.SQL learning via LSTM Generated samples may
(Lietal | injection detection injection sample generation offective positive ’ not cover all real-world
2019) mi thod tailored for method to address data imbalance 93.47% sample eI; cration SQLi variations; limited
[43] intellicent and overfitting. Word2Vec was e ‘e du(?e d iverﬁ tting: validation in diverse real-
{ansHo r%ation used for feature embedding. The stron eneralizatii;l world deployment
svs temf usine DL model was trained and evaluated and %11g h accurac environments.
Y gL on six datasets (DS1-DS6). & Y
Used an MLP model with an The model can detect
embedding layer trained on SQLi . 'all types oka QL The n;odel docs S.Othl?e -
sopier | Todsiman | eris o h i ncio inion ks ds. | g st i i
efficient SQL dataset and normal plain text. o Y y g
al 2021) o . E 98% defined features, sentence context,
injection detection Data preprocessing included L. . .
[44] . L i supports generalization, potentially causing
system using DL. tokenization, stop-word removal, . . o
lemmatization, character filtering an(iT CI?E ‘tk))e ex(‘{e.nded to misclassification in rare
.] . ? -based input cases.
word indexing, and padding. detection.
Query tree generation using Utilized structural
(L:I(llc(i) ¢ IE'Z&?:)ZC;‘[S'L&II;S PostgreSQL logs; feature query trees for better Evaluation on a limited
) . extraction via Fisher Score; detection; combined
Phalke and classify users . . . 94.12% L dataset lacks DL models;
2016) (normal or attacker) classification via SVM query analysis with only binary classification
. implemented through the WEKA user behavior)
[45] based on queries. . . .
library. classification.
To develop an Evaluated 23 ML classifiers using . o .
(Hasan et intelligent system MATLAB; selected the top five eva(lil(;ll;lilStrlecl)l;3 rrlrflljl\lli;el le %;I;lét?g'ggt?(liq})egtz{etr)ﬁgrlfg
for detecting SQL | based on accuracy. Collected SQL . . p ;
al. 2019) iniection attacks statement datasets from 93.8% | classifiers, integration affected overall accuracy,
[46] ! of a user-friendly GUI, | relied on basic numerical

using ML
techniques and

w3schools and OWASP.
Extracted numerical features for

and high detection

features, and the system

13

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

enhance detection

classification and implemented a

accuracy for injected

was not validated in a real-

accuracy via a GUI GUI-based detection system. queries. world environment.
interface.
(Sommer Trained Q-learning agents in a Covers all SQLI types; Lower accuracy
Develop RL agents . . . enables transfer uncertain cases; Q-learning
voll et al. . synthetic environment with 5 o . R .
to simulate all types . . 96% learning; reduces scalability limits; synthetic
2024) o SQLi types and improved . S
[47] of SQL injection. reprocessin expert input; realistic setup lacks real-world
prep & simulation. complexity.
To identify a Compared NB, KNN, RF, DT, Stackine outperformed
(el lightweight ML Bagging, Stacking, and CatBoost i mg tHIl) trics: Stacking had high training
S ala | model for detecting on the WUSTL-I10T-2021 CatBooosi hag hici;es ¢ time; the study focused on
2022) cyber-attacks in dataset using Mutual Information - recision: NB \%v as only four types of attacks,
48] blockchain-enabled (MI) and Extra-trees (ET) for tPas test 1o ’train DT and no DL models were
industrial supply feature selection and . included for comparison.
chains. undersampling for class balance. fastest to predict
Utilized datasets containing both
Develop two benign and malicious SQL .
customized queries, converting them into tg;losrtg?fg;csh gicgftz
convolutional numeric arrays (64x64x1), . . ’ . .
. incorporation of Not tested extensively in
neural network followed by a multi-layer CNN S .
. . . generalization real-world environments,
(Muduli | models (SIDNet-1 architecture (convolutional, . . . h
of al and SIDNet-2) for MaxPooling, Dropout, Densc) improvement strategies | did not evaluate other web
| . =2 D s) 98.02% | (Dropout), deployable attacks (e.g., XSS),
2024) high-accuracy SQL SIDNet-2 includes additional .
Lo . in WAF or post- performance depends on
[49] injection detection Dropout layers after each . . .
: . . firewall, supports the quality and diversity of
and prevention, convolutional and pooling to . X
. o . . continuous learning to the dataset.
with the ability to improve generalization. adapt to evolvin
integrate into web Performance compared with ML p threats £
protection systems. models (SVM, KNN, DT, NB) ’
and previous DL models.
(Al CNN with a tailored pre- Reduces training Relies on domain-specific
v and Detect code- processing stage that encodes requirements through | pre-processing knowledge;
Bianchi injection attacks symbols as type and value pairs; Up to semantic encoding; performance varies with
2019) ’ (SQL and XSS) local search to optimize network 94% modular and easily data and necessitates
[50] with DL. configuration; optional static reconfigurable retraining when data
signature check. framework. distributions change.
ApilgTDl\/va(v?tI}\llN- Detects encoded or Requires analyst
normalized obfuscated payloads Veriﬁcatcilon initially due to
Unicode Run a signature NIDS (Snort) in that Snort misses; false positives; p};blic
Transformation parallel with a Traffic Analysis as:ésg;ii; aggg?iﬁ;nd benchmark sets ;re small,
(Kim et Format — 8-bit (System; learn on HTTP payloads (appro fimatel five which can induce
al. 2020) | UTF-8) encoding of at the application layer; fast 93% ne\l;prules or n};on th) overfitting; focuses on
[51] spatial features) to preprocessing via UTF-8 P HTTP and excludes Secure

detect unknown or
obfuscated web
attacks and to
improve Snort rules
in real time.

encoding; CNN-LSTM model
tuned for scalability (Docker).

while avoiding
duplicates; flexible,
scalable design with
daily labeling for
continual retraining.

Sockets Layer(SSL) and

User Datagram Protocol

(UDP); depends on high-
quality labeled data.

The fifty studies reviewed show how SQL injection
detection has changed from traditional machine-
learning pipelines with hand-crafted features to deep
and hybrid architectures that can learn contextual or
hierarchical representations directly from payloads.
Classical methods, mainly using BoW, TF-IDF, or

14

similar methods like ITFIDF with classifiers like
SVM, RF, and LR, still work well in controlled
settings [9, 15, 24, 25], but they are often specific to one

dataset and can't handle inputs that are hidden or meant

to trick the system. Deep learning techniques,
especially CNN, Bi-LSTM, and their hybrids [13, 21,

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

27, 34], can extract features and model sequences
better, but they may need more computing power,
which makes them less useful in real time. Contextual
embeddings, such as BERT-based variants [5, 12, 33,
35], improve semantic resilience but still have
problems with memory efficiency and inference
latency.

From a deployment perspective, only a subset of
work from offline experiments to
operational prototypes. Examples include Flask-based
services [14, 15], and firewall or edge-device
integrations [10, 12, 49], highlighting a persistent gap
in real-world validation. Similarly, explainability via
SHAP or LIME is present in select studies [16, 17], but
remains underutilized, reducing auditability in
security-critical contexts. Data-related constraints are
also prevalent, with many evaluations relying on
small, single-source, or synthetic datasets [26, 31, 35],
undermining generalizability. Furthermore, multi-
attack detection frameworks remain rare, with most
solutions narrowly scoped to SQLi [42, 44, 47].

These patterns underscore the primary gaps
addressed by the present work: employing enriched
and multi-source feature representations to improve
robustness across diverse payload formats, integrating
deep contextual modeling with resource-aware design
to balance accuracy and deployment feasibility,
embedding explainability into the detection pipeline
for enhanced transparency, and extending detection
capabilities to broader web-attack families within a
unified, real-time framework.

transitions

4. Results and Discussion

The included studies report high accuracies under
controlled evaluations across classical ML pipelines,
deep and hybrid architectures,
embedding approaches. Classical NLP and ML
baselines can be strong: TF-IDF and other NLP
features with NB and SVM or ensembles reach 96—
99% in several works, including 99.77% with NLP-
based preprocessing and multiple classical classifiers,
and 98.15% with BoW and RF against four ML
baselines [11]

Deep-learning advances show comparable or higher
performance reducing manual
engineering. Pure CNN detectors achieve 98.16% and
99.50% on large or real-traffic datasets [27, 28],
whereas a CNN-BIiLSTM hybrid reaches 98% on

and contextual-

while feature

15

labeled queries [13]. A lightweight CNN with multi-
head self-attention attains 98.98% with 69,269
parameters and fast inference suitable for edge devices
[12].

Contextual and sentence-level semantics further
improve robustness. A BERT-LSTM hybrid reports
97.3% on HttpParams [32]; synBERT reaches 99.74%
with semantic learning [33], and a TextCNN followed
by Bi-LSTM with an attention mechanism exceeds
99.57% [34]. Comparative work finds that
contextualized embeddings deliver over 99% accuracy
with better calibration and reduced training time,
although they require more memory and typically
exclude the pretraining cost [5].

Evidence of practical deployment exists but remains
limited. Examples include a Flask-based ensemble
system [15]. , microservice-oriented deployment with
TF-IDF and CountVectorizer [36], and a two-layer
firewall combining pattern matching with ML [10],
The lightweight attention model targets edge scenarios
[12]. However, many studies still lack online
evaluation or adversarial testing.

On explainability, one ensemble study integrates
SHAP and LIME with 99.50% accuracy, supporting
auditability, although such tooling is not yet
widespread [17].

Recurring limitations include small or single-source
datasets, scarce external or real-time validation, and
computational demands for some deep models.
Reported issues include limited or simulated data,
missing dataset details, resource requirements, or
slightly lower performance on certain malicious
subsets [12, 15, 41].

Ranking summary. Contextual-embedding and
BERT-hybrid methods generally top accuracy (often
99%) [5, 33, 34]; CNN and BiLSTM hybrids follow
closely (98-99.5%) [13, 27, 28]; classical TF-IDF and
BoW pipelines provide strong baselines (96-99%)
with lower complexity[9, 11, 25].
complexity trade-off. = Contextual
embeddings improve calibration but increase memory
footprint [5]; lightweight attention models trade a
minor accuracy margin for fast edge-side inference
[12].

Accuracy

5. Conclusion

This review indicates that SQL injection detection
attains high performance across three main families of
approaches: classical pipelines based on textual

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

representations, such as TF-IDF [9, 25, 36]; deep and
hybrid models built on convolutional and recurrent
networks, including CNN and CNN-BiLSTM [13, 27,
28]; and contextual-embedding and modern language—
representation methods [5, 33, 34].

In general, contextual approaches lead in accuracy
but require more memory [5], lightweight attention-
and CNN-based models are better suited to edge, low-
latency scenarios [12], and classical pipelines remain
strong, low-complexity baselines[11].

Deployability is evident yet still limited: examples
include Flask-based prototypes [15]. , microservice-
oriented deployments [36], and firewall or edge
integrations [10, 12]. Nevertheless, live-traffic
evaluation and adversarial testing remain scarce [10,
12, 15] Explainability is only sparsely adopted [17], and
dataset constraints together with heterogeneous
protocols hinder external validity [12, 15, 41].

Operational notes. In terms of computational
complexity, a lightweight attention model contains
about 69,269 parameters with fast inference
appropriate for edge devices [12]. Contextual
embeddings generally increase memory requirements,
and pretraining cost is typically not included in
reported training time [5]; BoW representations can
also inflate memory as vocabularies grow [5].
Regarding error profiles, one CNN study reported a
notable number of false negatives on the malicious
subset, underscoring the need for careful threshold
calibration to balance missed attacks against false
alarms [27]. On the resource side, deployments span
traditional servers via Flask [15], cloud microservices
[36], firewall-style integrations [10], and edge
execution for lightweight models [12].

6. Limitations

While this literature review comprehensively
synthesizes fifty peer-reviewed studies on SQL
injection detection using ML and DL techniques,
several constraints remain: In terms of the review’s
scope, it has to be noted that the literature review only
covers studies published between the years 2015 and
2025, and only within the bounds of reputable, peer-
reviewed journals, including IEEE, Springer, Elsevier,
ACM, and MDPI. While some relevant indexed
literature may be grey and non-published, which holds
some relevant emerging perspectives, these have also
been excluded. This review also focuses on SQLi
specifically, including only studies where SQLi was

16

the primary focus. Research concerning broader web-
attack detection was left out, unless SQLi was
explicitly considered, which may lead to the omission
of relevant methodology found within adjacent fields,
including Cross-Site Scripting (XSS) or Denial of
Service (DoS). This review also relies on the measures
provided within the studies. The review may be able
to generate an analysis based on performance metrics
and methodological attributes provided by authors, but
any inconsistencies concerning reporting standards or
dataset descriptions may impact the comparison of
results across the studies. There is also the question of
pace concerning the fast movement of Al-driven
security research, where the relevant techniques or
datasets may outpace the review’s closing date,
leading to revisions of some of the trends or gaps that
have been identified.

7. Future Work.

Firstly, broadening inclusion criteria to incorporate
high-quality but non-indexed technical
reports, and industry white papers to capture state-of-
practice alongside academic research.

Second, extending the scope to multi-attack detection
literature to identify architectures adaptable beyond
SQLi.

Third, conducting a meta-analysis to statistically
compare performance across studies and identify
effect sizes of different feature extraction or model

types.

sources,

References

[1] D. Chen et al., “SQL injection attack detection and
prevention techniques using deep learning,” J. Phys.
Conf. Ser., vol. 2021, IOP Publishing, 2021.

[2] OWASP Foundation, “OWASP Top 10 — 2021: The ten
most critical web application security risks,” OWASP,
2021. [Online]. Available:
https://owasp.org/Top10/.[Accessed: Jul. 25, 2024].

[3] A. L. Buczak and E. Guven, “A survey of data mining
and machine learning methods for cyber security
intrusion detection,” IEEE Commun. Surveys Tuts., vol.
18, no. 2, pp. 1153-1176, 2015.

[4] U. Farooq, “Ensemble machine learning approaches for
detection of SQL injection attack,” Tehnic¢ki Glasnik,
vol. 15, no. 1, pp. 112-120, 2021.

[51J. Zulu et al., “Enhancing machine learning-based SQL
injection detection using contextualized word
embedding,” in Proc. 2024 ACM Southeast Conf., 2024.

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

[6] I. S. Crespo-Martinez et al., “SQL injection attack
detection in network flow data,” Comput. Secur., vol.
127, p. 103093, 2023.

[7] M. Zivkovic et al., “Optimizing SQL injection detection
using BERT encoding and AdaBoost classification,” in
Proc. 2nd Int. Conf. Innov. Inf. Technol. Bus. (ICIITB
2024), Atlantis Press, 2024.

[8] R. Zuech, J. Hancock, and T. M. Khoshgoftaar,
“Detecting SQL injection web attacks using ensemble
learners and data sampling,” in Proc. 2021 IEEE Int.
Conf. Cyber Secur. Resil. (CSR), IEEE, 2021.

[9] P. Pramono, R. D. Irawan, and A. A. Sari, “Comparative
analysis of SQL injection attack classification using
Naive Bayes method and support vector machine
(SVM),” 2024.

[10] A. S. S. Ahmed et al., “A hybrid approach to detect
injection attacks on server-side applications using data
mining techniques,” in Proc. 3rd Int. Conf. Sustainable
Technol. Ind. 4.0 (STI), IEEE, 2021.

[11] M. Ahmed and M. N. Uddin, “Cyber attack detection
method based on NLP and ensemble learning approach,”
in Proc. 23rd Int. Conf. Comput. Inf. Technol. (ICCIT),
IEEE, 2020.

[12] R.-T. Lo, W.-J. Hwang, and T.-M. Tai, “SQL injection
detection based on lightweight multi-head self-
attention,” Appl. Sci., vol. 15, no. 2, p. 571, 2025.

[13] N. Gandhi et al., “A CNN-BIiLSTM based approach for
detection of SQL injection attacks,” in Proc. Int. Conf.
Comput. Intell. Knowl. Economy (ICCIKE), IEEE,
2021.

[14] P. Ogini, E. Taylor, and N. Nwiabu, “A deep learning
approach for the detection of structured query language
injection vulnerability,” Int. J. Inf. Secur., vol. 11, no. 5,
2022.

[15] R. Pallam et al., “Detection of web attacks using
ensemble learning,” Learning, vol. 3, no. 4, p. 5, 2021.

[16] A. G. Kakisim, “A deep learning approach based on
multi-view consensus for SQL injection detection,” Int.
J. Inf. Secur., vol. 23, no. 2, pp. 1541-1556, 2024.

[17] T.-T.-H. Le et al.,, “Enhancing structured query
language injection detection with trustworthy ensemble
learning and boosting models using local explanation
techniques,” Electronics, vol. 13, no. 22, p. 4350, 2024.

[18] F. K. Alarfaj and N. A. Khan, “Enhancing the
performance of SQL injection attack detection through
probabilistic neural networks,” Appl. Sci., vol. 13, no. 7,
p. 4365, 2023.

[19] F. Y. Hernawan, 1. Hidayatulloh, and 1. F. Adam,
“Hybrid method integrating SQL-IF and Naive Bayes
for SQL injection attack avoidance,” J. Eng. Appl.
Technol., vol. 1, no. 2, 2020.

[20] B. Arasteh et al., “Effective SQL injection detection: A
fusion of binary Olympiad optimizer and classification
algorithm,” Mathematics, vol. 12, no. 18, p. 2917, 2024.

[21] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Deep
learning architecture for detecting SQL injection attacks
based on RNN autoencoder model,” Mathematics, vol.
11, no. 15, p. 3286, 2023.

[22] J. R. Tadhani et al., “Securing web applications against
XSS and SQLi attacks using a novel deep learning
approach,” Sci. Rep., vol. 14, no. 1, p. 1803, 2024.

17

[23] R. Bakir, “UniEmbed: A novel approach to detect XSS
and SQL injection attacks leveraging multiple feature
fusion with machine learning techniques,” Arab. J. Sci.
Eng., pp. 1-14, 2025.

[24]Y. Li and B. Zhang, “Detection of SQL injection attacks
based on improved TFIDF algorithm,” J. Phys. Conf.
Ser., IOP Publishing, 2019.

[25] W. Zhang et al., “Deep neural network-based SQL
injection detection method,” Secur. Commun. Netw.,
vol. 2022, no. 1, p. 4836289, 2022.

[26] D. P. Purbawa et al., “An enhanced SQL injection
detection using ensemble method,” JUTT: J. Ilm. Teknol.
Inf., vol. 21, no. 1, pp. 1-9, 2023.

[27] M. Shahbaz et al., “Evaluating CNN effectiveness in
SQL injection attack detection,” J. Comput. Biomed.
Inform., vol. 7, no. 2, 2024.

[28] A. Luo, W. Huang, and W. Fan, “A CNN-based
approach to the detection of SQL injection attacks,” in
Proc. IEEE/ACIS 18th Int. Conf. Comput. Inf. Sci.
(ICIS), IEEE, 2019.

[29] M. Alshammari, “Deep learning approaches to SQL
injection detection: evaluating ANNs, CNNs, and
RNNs,” in Proc. Int. Conf. Math. Stat. Phys. Comput.
Sci. Educ. Commun. (ICMSCE 2023), SPIE, 2023.

[30] N. Thalji et al., “AE-Net: Novel autoencoder-based
deep features for SQL injection attack detection,”
IEEE Access, vol. 11, pp. 135507-135516, 2023.

[31]1 Q. Li et al., “A SQL injection detection method based
on adaptive deep forest,” IEEE Access, vol. 7, pp.
145385-145394, 2019.

[32] Y. Liu and Y. Dai, “Deep learning in cybersecurity: A
hybrid BERT-LSTM network for SQL injection attack
detection,” IET Inf. Secur., vol. 2024, no. 1, p.
5565950, 2024.

[33] D. Lu, J. Fei, and L. Liu, “A semantic learning-based
SQL injection attack detection technology,”
Electronics, vol. 12, no. 6, p. 1344, 2023.

[34] H. Sun, Y. Du, and Q. J. A. S. Li, “Deep learning-based
detection technology for SQL injection research and
implementation,” Appl. Sci., vol. 13, no. 16, p. 9466,
2023.

[35] V. Devalla et al.,, “Murli: A tool for detection of
malicious URLs and injection attacks,” Procedia
Comput. Sci., vol. 215, pp. 662—676, 2022.

[36] E. Peralta-Garcia et al., “Detecting structured query
language injections in web microservices using
machine learning,” in Informatics, MDPI, 2024.

[37] P. Tang et al., “Detection of SQL injection based on
artificial neural network,” Knowl.-Based Syst., vol.
190, p. 105528, 2020.

[38] K. Ross et al, “Multi-source data analysis and
evaluation of machine learning techniques for SQL
injection detection,” in Proc. 2018 ACM Southeast
Conf., 2018.

[39] C. Y. Daramola et al., “Malicious query recognition
using chosen machine learning techniques,” SN
Comput. Sci., vol. 6, no. 3, p. 281, 2025.

[40] T. Muhammad and H. Ghafory, “SQL injection attack
detection using machine learning algorithm,”
Mesopotamian J. Cybersecur., vol. 2022, p. 5-17, 2022.

[41] J. Triloka, H. Hartono, and S. Sutedi, “Detection of
SQL injection attack using machine learning based on

Sahar Saadallah Ahmed /NTU Journal of Engineering and Technology (2025) 4 (4) : 1-17

natural language processing,” Int. J. Artif. Intell. Res.,
vol. 6, no. 2, 2022.

[42] M. Hirani et al., “A deep learning approach for detection
of SQL injection attacks using convolutional neural
networks,” Dept. Comput. Eng., MPSTME, NMIMS
Univ., Mumbai, India, 2020.

[43] Q. Li et al.,, “LSTM-based SQL injection detection
method for intelligent transportation system,” IEEE
Trans. Veh. Technol., vol. 68, no. 5, pp. 41824191,
2019.

[44] K. Jothi et al., “An efficient SQL injection detection
system using deep learning,” in Proc. Int. Conf. Comput.
Intell. Knowl. Economy (ICCIKE), IEEE, 2021.

[45] A. Ladole and M. Phalke, “SQL injection attack and
user behavior detection by using query tree, Fisher score
and SVM classification,” Int. Res. J. Eng. Technol., vol.
3, no. 6, pp. 1505-1509, 2016.

[46] M. Hasan, Z. Balbahaith, and M. Tarique, “Detection
of SQL injection attacks: A machine learning approach,”
in Proc. Int. Conf. Electr. Comput. Technol. Appl.
(ICECTA), IEEE, 2019.

[47] A. A. Sommervoll, L. Erdddi, and F. M. Zennaro,
“Simulating all archetypes of SQL injection
vulnerability exploitation using reinforcement learning
agents,” Int. J. Inf. Secur., vol. 23, no. 1, pp. 225-246,
2024.

[48] S. Ismail et al., “A comparative study of lightweight
machine learning techniques for cyber-attack detection
in blockchain-enabled industrial supply chain,” IEEE
Access, 2024.

[49] D. Muduli et al., “SIDNet: A SQL injection detection
network for enhancing cybersecurity,” IEEE Access,
2024.

[50] S. Abaimov and G. Bianchi, “CODDLE: Code-
injection detection with deep learning,” IEEE Access,
vol. 7, pp. 128617-128627, 2019.

[517 A. Kim, M. Park, and D. H. Lee, “AI-IDS: Application
of deep learning to real-time web intrusion detection,”
IEEE Access, vol. 8, pp. 70245-70261, 2020.

18

