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consistency and accuracy. But with AI, there's been a big shift. This review 
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easier and more reliable. It covers different AI systems used, from older 

semi-automated ones like HANDX to newer ones like BoneXpert. The 

review explains how these systems work, their pros and cons, and how 

well they perform. It's a helpful guide for scientists, doctors, and anyone 

interested in this field, covering both old and new AI-driven methods for 

evaluating bone age. 
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Introduction 

 The fast-developing discipline of AI focuses 

on building machines with intelligence with human 

intelligence [1]. The application of AI in the medical 

field has advanced significantly, especially in the 

area of deep learning, which is a subset of AI that 

makes use of artificial neural networks (ANNs). The 

Convolutional Neural Network (CNN) is one of the 

most notable forms of artificial neural networks 

(ANNs) and is widely used in image analysis and 

recognition tasks [2]. CNNs are highly effective in 

supervised learning scenarios, exhibiting state-of-

the-art performance in tasks like picture 

classification and segmentation [3]. 

Recurrent Neural Networks (RNNs), in 

addition to CNNs, are essential to AI, especially 

when it comes to identifying regular patterns in data 

that incorporate sequential or transient data. RNNs 

are used in many different domains, such as text 

processing, music, lyric writing, stock prediction, 

language translation, and songwriting. The 

versatility of RNNs in processing serial data 

emphasizes their importance in a range of real-world 

applications [4]. 

Simulated intelligence altogether affects 

clinical imaging, with applications crossing from 

organ division, base division, and physical article 

confinement to the distinguishing proof and 

classification of injuries and inconsistencies [5]. 

Various examinations have exhibited the viability of 

CNN-based profound learning models in different 

undertakings, including the division of 

neuroanatomic designs, the arrangement of 

neurodegenerative illnesses, the discovery of 

irregularities in the chest, the division of livers, the 

grouping of pathologic discoveries in the liver, and 

the identification and characterization of bosom 

disease [6]. 

The automated determination of bone age is 

one prominent use in medical imaging. Many 

attempts to create automated techniques for 

determining bone age have been made in the last few 

years [7]. This particular job, which presents a 

typical object recognition and classification 

challenge in the context of deep learning, has gained 

attention from the machine learning community. 

With a given input, say a left-hand radiograph with 

the distal radius and ulnar epiphysis, the method 

entails estimating a corresponding class (e.g., bone 

age) [8]. 

Lately, there has been an outstanding change 

in the worldview for this particular clinical 

application with the staggering outcome of robotized 

bone age evaluations using CNN-based AI models 

[1]. To investigate the achievements of artificial 

intelligence-based bone age assessments and lay the 

foundation for future advancements in this subject, 

this survey article will analyze the present status of 

this point. This work adds to the changing field of 

man-made brainpower applications in medication by 

offering a top to bottom writing assessment and 

verifiable viewpoint on robotized bone age 

evaluations. 

 

Development of Automated Techniques 

for Determining Bone Age 

The determination of bone age, which is 

essential for tracking development and growth, is 

often based on radiographs taken of the left wrist. 

Common techniques include the Greulich and Pyle 

(GR) Atlas, a digital substitute created in 2005, and 

the GP approach, which is based on the Greulich and 

Pyle atlas. The GP approach is quick and easy to use, 

but it can only be used to Caucasians in North 

America. Higher resolution photos are available 

with the GR Atlas, however it has more outliers and 

is influenced by ethnic differences. Mature 

individuals are categorized into 20 regions of 

interest using the Tanner Whitehouse Method 

(TW2) in Figure (1), although there are time and 

ethical issues with process. Even with 

improvements, bone age assessment techniques are 

unable to match the changing maturation trends of 

today's kids [9].  
Figure 1. An illustration of the region of interest that 

should be used for age computation is provided by the 
Tanner Whitehouse Method (TW2) [9]. 

 

The shape, maturity level, and fusion time 

between the primary and secondary ossification 

centers are evaluated to define bone age, which is a 

critical predictor of bone maturity [7]. For 

determining bone age, a variety of techniques are 

frequently used, including the Greulich-Pyle (GP) 

and Gilsanz-Ratibin atlas-based approaches [10]. 

Then again, the Leather Treater Whitehouse (TW) 

approach surveys specific radiographic districts of 

interest in the left-hand bones utilizing an evaluating 

framework [11]. The development appraisal of the 

span, ulna, and short bones Radiographic Union 

Score (RUS) is the fundamental accentuation of the 

refreshed rendition, TW3 [11]. Although there have 

been efforts to investigate the use of MRI and 

ultrasound for determining bone age, these methods' 

validation is still lacking, and left-hand radiographs 

continue to be widely used since they are less 
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expensive. Low doses (0.001–0.1 mSV), which are 

regarded as safe and equivalent to a 20-minute 

exposure to natural radiation, allay worries about 

radiation exposure [12]. Although bone age has 

disadvantages compared to chronological age, it 

correlates better with biological maturity indicators 

[13]. Even for professionals, the evaluation 

procedure is difficult and time-consuming. Despite 

being quick, the GP approach is non-standardized, 

which causes variations between observers [14]. On 

the other hand, the TW approach provides better 

precision and repeatability although requiring more 

time [15]. 

There has always been a need for automated 

methods because manual bone age evaluation has its 

own set of difficulties. The HANDX system, a semi-

automated method for diagnosing skeletal growth 

anomalies in children and lowering inter-observer 

variability, was the first automation attempt, 

launched in 1989 [15]. Later systems that attempted 

to improve efficiency included the computer-based 

skeletal ageing scoring system (CASAS, 1994) by 

Tanner et al. [16] and the PROI-based system (1991) 

by Pietka et al. [17]. Although it was said to take 

longer than the manual TW method, CASAS 

examined the 13 bones from the TW3-RUS system 

using computer-based maturity grading and manual 

bone identification [16]. 

Automated methods for assessing bone age 

have also been developed in Korea; one noteworthy 

system that was unveiled in 2009 used a normalized 

form model. This approach estimates bone age, 

automatically classifies each segment of the bone, 

and uses the categorized images to create a 

normalized shape model. Expert radiologists 

participated in comparative investigations that 

revealed a mean absolute error (MAE) of roughly 

0.679 years [18]. These efforts are a reflection of 

continuous progress in the automation of bone age 

determinations, with the goal of resolving the 

difficulties and time limits related to human 

techniques.     

 

Revolutionary Developments: AI-Driven 

Autonomous Bone Age Determination 

Forming a New Chapter in Pediatric 

Radiology 

Post the resurgence of AI in the 1980s and 

1990s, the term “Computer Aided Detection” 

(CAD) emerged [19]. Following the third AI boom, 

CAD evolved into conventional and AI-based 

detection categories. AI-based CAD, being task-

agnostic, employs deep learning algorithms to self-

train on provided data [30]. In the realm of pediatric 

radiology, bone age images serve as an ideal dataset 

due to their standardized findings and the presence 

of a single image of the left hand and wrist [20]. 

In 2019, Dallora et al. led a far reaching 

survey of AI based robotized bone age evaluation 

arrangements, including relapse based techniques, 

counterfeit ANNs, CNNs, support vector machines, 

Bayesian organizations, choice trees, and K-closest 

neighbors [21]. Their precise writing survey 

featured that most examinations intended to propose 

programmed bone age evaluation frameworks, with 

a particular spotlight close by and wrist radiographs. 

The parts of nationality and financial contemplations 

were not widely investigated. Typical presentation, 

in the study, achieved a mean MAE of 9.96 months 

[21]. Following this meta-examination, different 

investigations for profound learning-based bone age 

evaluation arrangements, including content-based 

picture recovery. In any case, just a modest bunch of 

these artificial intelligence based arrangements have 

been effectively marketed. One such outstanding 

framework is the BoneXpert, presented in 2008. 

BoneXpert uses highlight extraction procedures and 

breaks down left hand radiographs in light of 13 

bones, eventually deciding bone age through either 

the Greulich-Pyle (GP) or Tanner-Whitehouse (TW) 

techniques. The product, utilizing a functioning 

appearance model, has taken in the customary shape 

and thickness appropriation of each dissected bone 

[22]. BoneXpert has acquired far and wide 

acknowledgment in Europe, approved through 

different examinations looking at manual appraisals. 

Booz et al. detailed a fundamentally higher 

connection between's BoneXpert-determined and 

reference bone ages correlation coefficient (r = 0.99) 

contrasted with peruse determined and reference 

bone ages (r = 0.90; significance level p < 0.001). 

Remarkably, BoneXpert shows improved time 

productivity in routine clinical practice contrasted 

with manual rating utilizing the GP strategy. Be that 

as it may, it displays constraints in cases including 

less than eight bones, unfortunate picture quality, 

and strange bone morphology. Nonstop adaptation 

redesigns intend to address and conquer these 

difficulties [23].  

 

Taxonomy of Methods for Bone Age 

Assessment 

An overview of the different automated 

systems for Bone Age Assessment (BAA) is given 

in the table. These systems use a variety of 

techniques, such as shape-driven models, neural 

networks, and image processing, to assess skeletal 

maturity from X-ray wrist pictures of the left hand. 

The evaluation section sheds insight into each 

system's possible uses in clinical settings by 

highlighting its advantages, disadvantages, and 

performance indicators. From early semi-automated 

methods like HANDX and CASAS to more modern, 

commercialized alternatives like BoneXpert, the 

systems are diverse. For academics, practitioners, 

and stakeholders interested in the development and 
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effectiveness of automated techniques in the field of 

bone age assessment, this table provides a thorough 

resource. 

 

Table 1. An Overview of Bone Age Assessment Automated Systems (BAA) 

System 

Name 
Description Evaluation 

HANDX 
System [24] 

Presented by Michael and Nelson in 1989, the HANDX is a semi-

mechanized framework intended to portion bones in X-beam pictures 
of the hand wrist utilizing picture handling procedures. While 

decreasing spectator inconstancy, its exactness has not been broadly 

assessed for an enormous scope. 

 The system's accuracy in fused 

hand images is questionable, and it 
has not undergone comprehensive 

large-scale evaluation.                                                                                                                  

PROI-Based 
System [25] 

Created in 1991 by Pietka and the group, this strategy depends on the 

Proximal Interphalangeal Region of Interest (PROI) examination, 

zeroing in on the district including the phalanges and epiphyses. It 
showed sensible exactness in bone age assessment, with a mean 

distinction of 0.02 mm and an estimation mistake of 0.08 mm in the 

assessment.   

 The system showed promising 

accuracy in bone age estimation, 
particularly in comparison with 

observer assessments.                                                                                                                        

CASAS 
System [7] 

 Proposed by Leather Treater and Gibbons in 1994, the Computer-

Assisted Skeletal Age Scoring system (CASAS) is semi-robotized, 

using the TW2 technique with range, ulna, and short bones 
Radiographic Union Score (RUS). It showed further developed 

precision contrasted with manual TW techniques, particularly for 

youngsters in typical circumstances. 

 CASAS was found to be more 

accurate than manual TW methods 

in assessing bone age, but it has 
limitations in handling 

pathological problems and requires 

a considerable number of manual 

interventions.                                              

Middle 
Phalanx of 

the Third 

Finger 

System [7] 

 Niemeijer fostered a robotized framework in which the center 
phalanx of the third finger is grouped utilizing the TW2 technique 

and a functioning shape model. The framework accomplished 

precision going from 73% to 80%, fundamentally appropriate to TW 

stages E to I and ages somewhere in the range of 9 and 17 years. 

 The system demonstrated good 

accuracy within specific age 

ranges and TW stages, but its 

applicability is limited to certain 

developmental stages of the third 

finger.                                                                          

Neural 

Network 
System 

Based on 

Linear 

Distance 
Measures 

[26] 

 Gross's system, introduced in 1995, method to measure hand wrist 

radiograph features and a neural network for bone age assessment. 

While achieving good correlation coefficients, it lacks 

morphological features applied in GP or TW methods, making it 
comparable to manual GP methods.  

 The system, relying on linear 
distance measures and a neural 

network, demonstrated good 

correlation coefficients, but it lacks 

the morphological features used in 
traditional GP or TW methods.                                                        

Phalanges 

Length 

Based 
System [26] 

 A fully automated system from the 1990s based on a Picture 

Archiving and Communication System (PACS), it estimates bone 

age using phalangeal length measurements. Despite introducing 

fuzzy classification to handle noisy data, it has limitations due to 
reliance on age-related relationships rather than measuring skeletal 

maturity.                

 The system, while introducing 

fuzzy classification, is limited by 

its dependence on age-related 

relationships and may not provide 
reliable indicators for skeletal 

maturity.                                                                  

The Third 

Digit: Three 
Epiphyses 

System [8] 

Sato et al. proposed an automatic system Computer-Aided Skeletal 

Maturity Assessment System (CASMAS) in which the bones of the 

third digit are broken down given proximal, center, and distal 

epiphyses. While showing sensible outcomes for a long time 
somewhere in the range of 2 and 15 years, exactness lessens for 

exceptionally youthful or more seasoned youngsters because of 

formative issues.  

 The system, known as CASMAS, 

presented reasonable results within 

specific age ranges but faced 
accuracy challenges for very 

young and older children due to 

developmental considerations.                                                      

Phalanges, 

Epiphyses, 

and Carpals 

System 

[27][28] 

 Developed by the National TsingHwa University, this computer-

based system focuses on the third digit extracting features from both 

hands. It utilizes thresholding methods, Gabor filters, and neural 

networks, achieving an accuracy of 85%. It shows potential for 

accurate BAA with low error rates.          

 The system demonstrated good 

accuracy in bone age estimation, 

particularly with low error rates, 

making it a promising method for 

automated assessments.                                                                                         

Mahmoodi 
Model [7] 

 Mahmoodi's system,  proposed in the 1990s, is based on phalangeal 

analysis using an active shape model and knowledge-based 

techniques. It achieved 82% accuracy for male patients and 84% for 
female patients, showing a reasonable relationship between the 

epiphysis-metaphysis region and chronological age.                   

The framework exhibited sensible 

precision, showing a critical 

connection between the epiphysis-
metaphysis locale and sequential 

age, especially with upgrades in 

the preparation set. 

Neural 

Network 

Classifiers 
Using 

 Liu et al. fostered a framework utilizing counterfeit brain networks 

in light of mathematical highlights of the RUS and carpal bones. It 

showed a little standard deviation in correlation with past 

 The framework showed 

diminished changeability in carpal 

bone-based evaluations contrasted 
with past frameworks, making it a 
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Features of 
the RUS and 

Carpal 

Bones [29] 

frameworks, lessening changeability in carpal bone-based 
frameworks.  

promising methodology for more 
steady bone age assessment. 

Neural 

Network 

Based on the 

Radius and 

Ulna [30] 

 Vega and Arribas proposed a framework foreseeing bone age given 

the TW technique utilizing the range and ulna. The framework 

utilizes brain networks in choice states, acquiring deduced 

probabilities with foreseen mistake rates. Regardless of restrictions, 

brain networks are considered significant for additional examination. 

 The framework showed many 

mean contrasts and is restricted to 

four TW3 levels, however, the 
analysts propose expected 

upgrades through improved bone 

division.  

Neural 

Network 

Analysis 
Based on the 

Epiphyses 

and Carpal 

Bones [31] 

 Rucci et al. introduced a system for assessing bone age based on 

epiphyses and carpal bones using neural networks. It demonstrated 
usefulness in classification within the TW2 method, although 

starting in a "dumb state" is identified as a significant drawback.  

 The system, despite its 

effectiveness in classification 
within the TW2 method, is limited 

by starting in a "dumb state," 

presenting a notable drawback.                                                                                       

ROHSAS 

System [32] 

For Bone Age Assessment (BAA), Slope and Pynsent's Radiographic 

Optimisation of the Human Skeletal Age System (ROHSAS) uses 

bone division, form recognition, and iterative procedures with a 25% 
rejection rate. It uses both 13-bone and 20-bone TW2 methodologies. 

Strengths of ROHSAS include its 

numerous BAA techniques, bone 
division and form recognition 

integration, and iterative approach. 

However, obstacles to its general 

adoption and reliability in clinical 
practice include its high rejection 

rate, lack of comparable 

performance data, insufficient 

validation details, and potential 
complexity. 

BoneXpert 

System [33] 

[29] 

 The BoneXpert system, introduced in 2009, relies on a shape-driven 

active appearance model and the TW RUS-based approach. 

Preliminary testing indicated reasonable performance, with accuracy 

stated as 0.42 years (GP method) and 0.80 years (TW2 method). It 
has been commercialized as a package since January 2009.  

 BoneXpert demonstrated 
reasonable accuracy in bone age 

estimation and has been 

commercialized as a package since 

2009. Further evaluation and 
usability testing are ongoing.                                                                         

Automated 
Web-Based 

System 

Using 

Histogram 
[34] 

Mansourvar et al. fostered a completely robotized Bone Age 
Assessment (BAA) framework in 2012 utilizing pressure methods in 

light of histogram procedures. The framework depends on picture 

vault, similitude measures, and a Content-Based Image Retrieval 

(CBIR) technique. It showed a mistake pace of 0.170625 years, 
demonstrating its validity for BAA. 

 The system demonstrated 

credibility for BAA with a low 

error rate, although it may not be 

reliable for images with poor 
quality or abnormal bone structure.                                                                                             

Assessment Metrics 

Assessment measurements are fundamental 

apparatuses in surveying the presentation and 

adequacy of AI models. These measurements give 

quantitative measures that help specialists, 

information researchers, and professionals 

comprehend how well a model is performing on a 

given errand. Normally utilized assessment 

measurements differ contingent on the idea of the 

issue being tended to. For relapse assignments, 

measurements like exactness, accuracy, review, F1-

score, and region under the ROC bend are much of 

the time utilized. R-Square estimates the general 

accuracy of expectations, while accuracy and review 

center around the compromise between accurately 

distinguishing positive occasions and staying away 

from misleading up-sides and bogus negatives.  

F1-score adjusts accuracy and review for a 

more extensive evaluation. ROC bends represent the 

model's separation capacity across various limits. 

For relapse undertakings, measurements like MSE, 

MAE, and R-squared are usually used to assess the 

model's prescient precision. These measurements on 

the whole give a far-reaching comprehension of a 

model's assets and limits, directing specialists in 

refining and streamlining their AI models for 

genuine applications. Figure (2) outlines the 

measurements utilized in this postulation 

 

Survey of Literature for DL-Based 

Approaches  

In this segment, a concise outline of past 

related works in the field of bone age evaluation 

utilizing Deep Learning (DL) is given. Bone age 

evaluation is a basic errand in pediatric radiology 

that includes deciding the skeletal development of 

an individual in light of X-beam pictures of the hand 

and wrist. This step is important to assess 

development irregularities, screen advancement, 

and analyze different endocrine and hereditary 

problems. 

In 2016, C. Spampinato, et al. proposed a 

model made out of a CNN named BoNet [Bone age 
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evaluation Network] design that was prepared 

without any preparation on the X-beam dataset for 

pre-made highlights that were removed by utilizing 

a CNN that had recently been prepared (on an 

alternate dataset) as an element extractor. An info 

picture was taken care of into the organization, and 

the 200-yield vector of a completely associated 

layer was perused. The relapse network was 

comprised of a bunch of completely associated 

layers (normally a couple) and a direct result layer 

that gave a gauge of the age of the bones. The 

discoveries demonstrated a rough 0.8-year 

distinction between a normal among manual and 

programmed assessments [35]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Assessment Metrics Presentation [36] 

In 2017, Larson, et al. introduced a 

concentrate on the exhibition of a profound learning 

brain network model in evaluating skeletal 

development on pediatric hand radiographs. The 

profound learning model beat master radiologists 

and existing robotized models about precision and 

consistency. The model accomplished a mean 

contrast of 0 years between bone age evaluations of 

the model and commentators, with a mean Root 

Mean Square (RMS) and Mean Outright Deviation 

(Frantic) of 0.63 and 0.50 years, separately. The 

evaluations of the model, clinical report, and 

commentators were inside the 95% furthest reaches 

of arrangement. The profound remaining 

organization design with 50 layers was utilized for 

this task. The creators recommended the likely 

clinical utilizations of their model in observing the 

development and advancement of pediatric patients. 

The review recognized the impediments of the 

dataset and the requirement for additional approval 

in bigger and more assorted populations [37]. 

In 2017, Zhou, et al. suggested a work that 

made full use of Deep Convolution Neural Network 

(DCNN) benefits by performing bone age 

classifications using transfer learning within the 

network. They identified different Regions of 

Interest (ROIs) according to domain knowledge and 

then used the related ROI patches to fine-tune the 

pre-trained VGGNet to obtain a local bone age 

classification model for each ROI. Multiple regional 

models were fused to get a final bone age 

classification. The outcomes demonstrated that, 

even with a limited dataset, the suggested strategy 

performed better than the most advanced BAA 

classification techniques available at that time, the 

mean absolute error (MAE) for the proposed 

approach was found to be 7.2 months[38].  

In 2018, Mutasa and associates introduced a 

groundbreaking neural network specifically tailored 

for Bone Age Assessment (BAA). Leveraging a 

substantial dataset sourced from prominent 

establishments and incorporating contemporary 

strategies, including residual connections and the 

inception architecture, their model surpassed 

previous deep learning techniques, achieving 

remarkably pronounced accuracy in this domain. 

Across diverse age and gender groups, the model 

demonstrated outstanding Mean Absolute Error 

(MAE) accuracies ranging from 0.497 to 0.662 on 

both validation and test datasets. These exceptional 

results underscore the effectiveness of customized 

neural networks and advanced strategies in 

significantly enhancing the accuracy of skeletal 

maturity assessment in podiatric radiology.[39]. 

In 2018, Iglovikov et al. proposed a profound 

learning way to deal with address the issue of bone 

age evaluation in pediatric radiology. The creators 

utilized a CNN design to gauge bone age from hand 
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radiographs exactly. Their methodology was 

contrasted with other regular techniques for bone 

age evaluation, like the Greulich and Pyle (GP) 

strategy and the Leather expert Whitehouse 3 

(TW3) technique, uncovering the prevalent 

execution of the CNN approach. The group of local 

models accomplished the most noteworthy 

exactness, with a Mean Absolute Error (MAE) of 

6.10 months, outperforming elective model sorts 

and patient companions. The creators led a 

responsiveness investigation to survey the effect of 

various radiographic highlights on the model's 

presentation, recognizing the distal sweep and ulna 

as the most instructive districts for bone age 

evaluation. The paper highlighted the likely clinical 

uses of their mechanized bone age evaluation 

technique, including the decrease of between 

onlooker fluctuation and the upgrade of patient 

results. [40]. 

Bui et al. in 2019, used TW3 and deep 

convolutional networks while conducting bone age 

assessment. For classifications, it used the expert 

TW3 and the deep learning Feature-Faster-RCNN 

for the Regional of Interest detections and 

Inception-v4 for classifications which improved its 

accuracy. Softmax features of ROI were valuable 

information in bone age estimation; experimental 

results showed a mean absolute error of 0.59 years 

which outperformed state-of-the-art methods. This 

method succeeded in GP-based approaches 

simulating TW3 using only seven ROIs but reaching 

state-of-the-art results. It addressed shortcomings in 

bone age assessment by applying TW3 expertise 

toward competitive accuracy[41]. 

Ren et al. 2019 suggested a two-stage 

framework that combined an attention module that 

focuses on bone age-relevant regions of radiographs 

with a regression CNN estimating directly the bone 

age from the radiographs’ image. When compared 

with other clinical schemes and automatic methods, 

the authors presented strong performances on two 

large datasets. It has excellent performances with 

MAEs of 5.2 months on average for the RSNA 

dataset and 5.3 months for SCH datasets. The work 

described the novelty of automatic bone 

measurement in children and presented practical 

recommendations for medical practice and further 

studies.[42]. 

Guo et al., in 2019, presented the 

development of a bone age assessment system of 

real-world X-rays for CNN handling degraded 

images often encountered in medical settings. Three 

different architectures are applied to the newly 

developed BoNet+ regression model that is built 

upon densely connected convolutional networks. 

This showed how effective the models were at 

predicting bone age from low-quality pictures. This 

noted that the system was superior to most bone age 

assessment systems including a poor-quality image 

evaluation system. An innovative U-Net-quality 

improvement network (QUIN) for image 

improvement. Overall, the system showed 

significant improvement when compared with what 

was available in the market previously, having an 

MAE of 0.76 years. BoNet+_CQ and BoNet+_DQ 

outperformed BoNet+_NQ indicating that they are 

appropriate for bad image quality.[43]. 

Liang et al. presented in 2019 a deep 

automated skeletal bone age evaluation method 

based upon the region–convolutional neural 

networks. The model was built to independently 

pick out features of bone radiographic images. The 

authors outlined the datasets used for training and 

testing of the model along with its final evaluation. 

This model exceeded the current methods of 

assessment by scoring an MAE of 0.48 and 0.51 per 

dataset. In addition, the authors addressed the 

possible use of their model in predicting growth and 

as an auxiliary diagnostic for biomedicine. This 

study gave an overview of the limits of current bone 

maturation estimation procedures, which it 

complemented with a newly proposed method based 

on neural networks. This showed that the proposed 

model could be used in an automated and accurate 

manner for the determination of bone age.[44]. 

Koitka et al., in 2020, introduced an 

estimation of bone age based on a deep learning 

technique when examining the growth of bones in 

pediatric images using their radiologist’s routine 

and focusing on the growth area in the hand. 

CLAHE was then used for preprocessing. This was 

a two-step neural network approach employing both 

object detection and regression. The dataset 

comprised of 12,611 bone radiographs taken from 

the RSNA Bone Age Challenge. Comparative 

analysis has indicated competitive outcomes for the 

tested RSNA, with an average mistake of 4.56 

months. It also provided greater clarity in 

interpreting results as well as feasibility.[45]. 

In the year 2020, Zulifye et. Al. proposed a 

new method of automatic bone age determination 

using deep learning and image registration. The 

authors give an elaborate outline of the intended 

methodology that incorporates the ResNet separable 

model and an Xception network repressor. In 

addition, they highlight the significance of timely 

diagnosis of growth disorders and explore how the 

proposed technique compares with existing 

advanced deep learning algorithms. It has shown 

that the suggested approach gave the smallest means 

absolute error which is equal to 8.200 months and a 

mean squared error of 121.902. The above findings 

show that the suggested technique can be 

successfully applied for automated bone age 

determination on hand radiographs.[46]. 

Wibisono and Mursanto (2020) suggest 

another technique for automatic bone age estimation 

based on neural networks combined with the RB-

FCL approach. To estimate the bone age of a 

patient, the RB-FCL method splits the hand X-ray 
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into five regions according to the suggestion by 

radiologists in the conventional evaluation methods 

and applies several deep learning algorithms such as 

VGG16, Resnet-50, Compared to the Landmark 

method, RB-FCL method has lower median 

absolute error value which is 4.08 months. The 

authors show the superiority of their RB-FCL 

models in comparison with other deep learning 

architecture designs and also traditional assessment 

approaches based on expert judgment. Further 

improvements in convolution may facilitate the 

application in other medical imaging systems.[47]. 

In 2021, Ibrahim Salim and A. Ben Hamza 

introduced the RidgeNet model, demonstrating its 

superior performance by achieving the lowest Root 

Mean Square Percentage Error (RMSPE) for both 

genders in the test set. The model showcased 

effective predictions of bone age with higher 

accuracy in Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and RMSPE metrics. 

The paper emphasized the model's efficacy, 

highlighting its capability to identify influential 

features using Smooth Grad-CAM, providing 

valuable insights into input data and learned 

features. The competitive edge of RidgeNet against 

various deep learning approaches was established. 

The overall MAE of 6.38 months indicated reliable 

bone age predictions, with gender-specific analysis 

revealing better accuracy for males (3.75 months) 

compared to females (5.27 months.[48]. 

In 2022, Xinzheng Xu et al. introduced a 

strategy integrating object discovery, fine-grained 

characterization, and the Leather treated 

Whitehouse 3 (TW3) procedure for bone age 

assessment. Results showed that the proposed 

technique accomplished serious execution, with an 

exactness of 86.93% and an MAE of 7.68 months 

on the clinical dataset. The various leveled 

approaches gave start-to-finish BAA, offering bone 

age values, location aftereffects of 13 locales of 

interest (returns for capital invested), and bone 

development data. The review added to tending to 

the restrictions of conventional manual BAA 

strategies and gave an exhaustive answer for precise 

and proficient bone age evaluation. The proposed 

technique exhibited better execution analysis than 

existing fine-grained picture order strategies, 

featuring its importance in the field of pediatric 

radiology [49] .   

 
Table 2. Related Works Analysis 

 Ref Used x-ray dataset 
Pre-trained Models 

for regression 

Performance 

in MAE 

(months) 

limitation 

1.  
Spampinato, et 

al [35] 

1,391 Digital 

Hand Atlas (DHA) 
BoNet 9.6 

The average discrepancy between 

manual and automatic evaluation 

of skeletal bone age is about 0.8 

years, which may still be 

considered a significant difference 

in clinical practice. 

2.  

Larson, et 

al 
[37] 

Radiological 

Society of North 

America (RSNA) 
bone age dataset 

deep residual 

network with 50 
layers 

6.0 

The study did not explore the 

potential limitations or challenges 

in implementing the model in a 
clinical setting 

3.  
Bui et al 

[41]. 

1375 images 
(public dataset 

from the Digital 

Hand Atlas) 

 

Faster-RCNN for 

ROI detection and 

Inception-v4 

7.08 

The paper does not provide 

detailed information about the 

specific preprocessing methods 

used in the proposed approach. 

4.  
Mutasa, et al 

[39]. 

8909 images from 

the hospital 

1383 Digital Hand 

Atlas (DHA) 

customized neural 

network 

Validation 

7.94 

Test 5.88 

The ground truth for the test set 

was obtained by averaging two 
pediatric radiologist reads, while 

the training data only used a single 

read, which may have influenced 

the performance comparison 
between the validation and test sets 

5.  Zhou, et al [38]. 140 images 
DCNNs 

VGGNet 
7.2 

the dataset used for bone age 

assessment is relatively small, 

which may limit the 

generalizability of the results. 

6.  
Iglovikov, et al 

[40]. 

(RSNA) bone age 

dataset 
CNN 6.10 

The paper does not provide a 

detailed analysis of the 
computational resources required 

for training and running the deep 

learning models, which could be a 

limitation for practical 
implementation 
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7.  
Ren, et al 

[42]. 

(RSNA) bone age 
dataset and 

Shanghai 

Children’s 

Hospital (SCH) 
dataset. 

CNN 

5.2 for 

RSNA 

5.3 for SCH 

The paper does not provide a 
comparison of the proposed 

method with other existing 

automated bone age assessment 

methods, limiting the ability to 
assess its performance about other 

approaches 

8.  
Guo, et al 

[43]. 

1400 

images 
BoNet+ 9.12 

The authors acknowledge that the 

proposed system cannot be directly 

applied in real-world scenarios and 

suggest updating the neural 
network parameters using real 

datasets for deployment. 

9.  
Liang et al. 

[44]. 

1369 Digital Hand 

Atlas (DHA) 

private data sets 

Faster RCNN and 

CNN 

6.12 

5.76 

The proposed model achieves good 

performance but may still have 

room for improvement with the 

application of more effective 

detection algorithms in the future 

10.  
Koitka , et al 

[45]. 

(RSNA) bone age 

dataset and 1,389 

Digital Hand Atlas 
(DHA) 

ResNets 4.56 

The current image pre-processing 
methods used in this study are 

restricted to simple enhancement 

techniques, while other studies 

have demonstrated more complex 
pre-processing pipelines for 

normalizing the visual appearance 

of hand radiographs 

11.  
Zulkifley, et al 

[46]. 
(RSNA) bone age 

dataset 
Xception network 8.2 

The study does not provide an 

analysis of the computational 

resources required for 
implementing the proposed 

method, such as processing time 

and memory usage. 

12.  

 

Ari Wibisono 

and Petrus 
Mursanto [47]. 

 

(RSNA) bone age 

dataset and 1392 
from atlas 

DenseNet121, 

InceptionV3, 
InceptionResNetV2 

6.97 

The paper does not mention any 

potential challenges or drawbacks 

associated with the implementation 
or practical application of the RB-

FCL approach. 

13.  

Salim and A. 

Ben Hamza 
.[48] 

(RSNA) bone age 

dataset 
VGG19 

5.27 for 

females 

3.75 for 

males 
6.38 for 

both 

The proposed approach in this 

paper suffers from high model 

complexity and requires a 

preprocessing image alignment 
step, which may limit its 

practicality. 

14.  
Xu, X et al 

[49] . 

(RSNA) bone age 

dataset 

And 2,518 clinical 
dataset 

CNN 

6.53 public 

dataset 

7.68 clinical 
dataset 

The paper does not provide 

information on the computational 

resources or time required for 

training and implementing the 
proposed three-stage hierarchical 

assessment method 

 

Discussion 

An exhaustive outline of significant 

examinations in the field of deciding bone age is 

given in the study of the writing segment, with an 

emphasis on those that utilize profound learning. 

These papers exhibit the movement of strategies 

from models, for example, BoNet in 2016 to novel 

brain networks explicitly intended for bone age 

assessment in 2018. The unrivaled exactness and 

consistency achieved by man-made intelligence-

driven arrangements are featured through 

examinations of man-made intelligence models 

against ordinary methods for radiologists in the 

discussion. Concentrates, for example, those 

directed in 2018 by Iglovikov et al., where CNN 

structures beat traditional methodologies like GP 

and TW, exhibit forward leaps in man-made 

intelligence-based bone age evaluation. The 

discussion additionally addresses research utilizing 

relapse CNNs, consideration modules, and move 

picking up, featuring the range of approaches used 

to further develop precision. 

With its extraordinary outcomes in RMSPE 

and orientation explicit examination, RidgeNet's 

consideration in 2021 features continuous 

progressions in simulated intelligence-driven bone 

age evaluation. Besides, the 2022 methodology by 

Xin Zheng Xu et al., which consolidates fine-
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grained order and article ID, exhibits nonstop 

endeavors to defeat disadvantages and lift viability. 

 

Conclusions 

The examination closes with an emphasis on 

how simulated intelligence is disturbing how 

pediatric radiologists measure bone age. The change 

from manual procedures to cutting-edge man-made 

intelligence-controlled arrangements has brought 

about remarkable additions in proficiency, 

precision, and between spectator fluctuation 

decrease. An exhaustive handle of the progressions 

made in this discipline is given by the conversation 

of various frameworks and procedures. It's vital to 

perceive the continuous troubles notwithstanding 

the achievements, for example, the necessity for 

more shifted and significant datasets, approval in 

genuine settings, and settling specific model 

limitations. The late examination has exhibited that 

computer-based intelligence procedure are 

continually developing, which looks good for future 

forward leaps and expanded relevance in helpful 

settings. 

To summarize, man-made intelligence-based 

bone age evaluation has formed into a basic part of 

pediatric radiology, assisting with working on 

clinical cycles and judgments with more precision. 

Cooperative endeavors among analysts, specialists, 

and industry partners will be vital in stretching the 

boundaries of computerized reasoning (simulated 

intelligence) in pediatric clinical imaging as 

innovation creates. 
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